The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A322064 Number of ways to choose a stable partition of a simple connected graph with n vertices. 7
 1, 1, 1, 7, 141, 6533, 631875, 123430027, 48659732725, 39107797223409, 64702785181953175, 221636039917857648631, 1575528053913118966200441, 23249384407499950496231003021, 711653666389829384034090082068939, 45128328085994437067694854477617868995 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS A stable partition of a graph is a set partition of the vertices where no non-singleton edge has both ends in the same block. LINKS Andrew Howroyd, Table of n, a(n) for n = 0..75 EXAMPLE The a(3) = 7 stable partitions. The simple connected graph is on top, and below is a list of all its stable partitions. {1,3}{2,3} {1,2}{2,3} {1,2}{1,3} {1,2}{1,3}{2,3} -------- -------- -------- -------- {{1,2},{3}} {{1,3},{2}} {{1},{2,3}} {{1},{2},{3}} {{1},{2},{3}} {{1},{2},{3}} {{1},{2},{3}} MATHEMATICA sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}]; csm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[OrderedQ[#], UnsameQ@@#, Length[Intersection@@s[[#]]]>0]&]}, If[c=={}, s, csm[Union[Append[Delete[s, List/@c[[1]]], Union@@s[[c[[1]]]]]]]]]; Table[Sum[Length[Select[Subsets[Complement[Subsets[Range[n], {2}], Union@@Subsets/@stn]], And[Union@@#==Range[n], Length[csm[#]]==1]&]], {stn, sps[Range[n]]}], {n, 5}] PROG (PARI) \\ See A322278 for M. seq(n)={concat([1], (M(n)*vectorv(n, i, 1))~)} \\ Andrew Howroyd, Dec 01 2018 CROSSREFS Row sums of A322278. Cf. A000110, A000569, A001187, A006125, A048143, A229048, A240936, A245883, A277203, A321911, A321979, A322063, A322065. Sequence in context: A221267 A070074 A051397 * A179569 A342812 A082157 Adjacent sequences: A322061 A322062 A322063 * A322065 A322066 A322067 KEYWORD nonn AUTHOR Gus Wiseman, Nov 25 2018 EXTENSIONS Terms a(7) and beyond from Andrew Howroyd, Dec 01 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 7 17:47 EDT 2024. Contains 375017 sequences. (Running on oeis4.)