login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245883
Number of distinct chromatic polynomials among all connected graphs on n nodes.
11
1, 1, 2, 5, 14, 50, 231, 1650, 21121, 584432
OFFSET
1,3
COMMENTS
A stable partition of a graph is a set partition of the vertices where no edge has both ends in the same block. The chromatic polynomial is given by chi_G(x) = Sum_p (x)_k, where the sum is over all stable partitions of G, k is the length (number of blocks) of p, and (x)_k is the falling factorial x(x-1)(x-2)...(x-k+1). - Gus Wiseman, Nov 24 2018
LINKS
Travis Hoppe and Anna Petrone, Encyclopedia of Finite Graphs
T. Hoppe and A. Petrone, Integer sequence discovery from small graphs, arXiv preprint arXiv:1408.3644 [math.CO], 2014.
Eric Weisstein's World of Mathematics, Chromatic Polynomial
EXAMPLE
From Gus Wiseman, Nov 24 2018: (Start)
The a(4) = 5 chromatic polynomials:
-6x + 11x^2 - 6x^3 + x^4
-4x + 8x^2 - 5x^3 + x^4
-2x + 5x^2 - 4x^3 + x^4
-3x + 6x^2 - 4x^3 + x^4
-x + 3x^2 - 3x^3 + x^4
(End)
MATHEMATICA
spsu[_, {}]:={{}}; spsu[foo_, set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@spsu[Select[foo, Complement[#, Complement[set, s]]=={}&], Complement[set, s]]]/@Cases[foo, {i, ___}];
falling[x_, k_]:=Product[(x-i), {i, 0, k-1}];
chromPoly[g_]:=Expand[Sum[falling[x, Length[stn]], {stn, spsu[Select[Subsets[Union@@g], Select[DeleteCases[g, {_}], Function[ed, Complement[ed, #]=={}]]=={}&], Union@@g]}]];
simpleSpans[n_]:=simpleSpans[n]=If[n==0, {{}}, Union@@Table[If[#=={}, Union[ine, {{n}}], Union[Complement[ine, List/@#], {#, n}&/@#]]&/@Subsets[Range[n-1]], {ine, simpleSpans[n-1]}]];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[OrderedQ[#], UnsameQ@@#, Length[Intersection@@s[[#]]]>0]&]}, If[c=={}, s, csm[Union[Append[Delete[s, List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
Table[Length[Union[chromPoly/@Select[simpleSpans[n], Length[csm[#]]==1&]]], {n, 5}] (* Gus Wiseman, Nov 24 2018 *)
CROSSREFS
Cf. A229048 (simple graphs, including disconnected ones, with unique chromatic polynomials).
Sequence in context: A320954 A322725 A339832 * A115340 A298361 A000109
KEYWORD
nonn,hard,more
AUTHOR
Travis Hoppe and Anna Petrone, Aug 05 2014
STATUS
approved