login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A125702
Number of connected categories with n objects and 2n-1 morphisms.
6
1, 1, 2, 3, 6, 10, 22, 42, 94, 203, 470, 1082, 2602, 6270, 15482, 38525, 97258, 247448, 635910, 1645411, 4289010, 11245670, 29656148, 78595028, 209273780, 559574414, 1502130920, 4046853091, 10939133170, 29661655793
OFFSET
1,3
COMMENTS
Also number of connected antitransitive relations on n objects (antitransitive meaning a R b and b R c implies not a R c); equivalently, number of free oriented bipartite trees, with all arrows going from one part to the other part.
Also the number of non-isomorphic multi-hypertrees of weight n - 1 with singletons allowed. A multi-hypertree with singletons allowed is a connected set multipartition (multiset of sets) with density -1, where the density of a set multipartition is the weight (sum of sizes of the parts) minus the number of parts minus the number of vertices. - Gus Wiseman, Oct 30 2018
LINKS
FORMULA
a(n) = A122086(n) for n > 1.
G.f.: 2*f(x) - f(x)^2 - x where f(x) is the g.f. of A000081. - Andrew Howroyd, Nov 02 2019
EXAMPLE
From Gus Wiseman, Oct 30 2018: (Start)
Non-isomorphic representatives of the a(1) = 1 through a(6) = 10 multi-hypertrees of weight n - 1 with singletons allowed:
{} {{1}} {{12}} {{123}} {{1234}} {{12345}}
{{1}{1}} {{2}{12}} {{13}{23}} {{14}{234}}
{{1}{1}{1}} {{3}{123}} {{4}{1234}}
{{1}{2}{12}} {{2}{13}{23}}
{{2}{2}{12}} {{2}{3}{123}}
{{1}{1}{1}{1}} {{3}{13}{23}}
{{3}{3}{123}}
{{1}{2}{2}{12}}
{{2}{2}{2}{12}}
{{1}{1}{1}{1}{1}}
(End)
PROG
(PARI) \\ TreeGf gives gf of A000081.
TreeGf(N)={my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)}
seq(n)={Vec(2*TreeGf(n) - TreeGf(n)^2 - x)} \\ Andrew Howroyd, Nov 02 2019
CROSSREFS
Same as A122086 except for n = 1; see there for formulas. Cf. A125699.
Sequence in context: A049527 A074371 A032202 * A052817 A156803 A002992
KEYWORD
nonn
STATUS
approved