login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A122086
Number of unlabeled free bicolored trees with n nodes (the colors are not interchangeable).
5
2, 1, 2, 3, 6, 10, 22, 42, 94, 203, 470, 1082, 2602, 6270, 15482, 38525, 97258, 247448, 635910, 1645411, 4289010, 11245670, 29656148, 78595028, 209273780, 559574414, 1502130920, 4046853091, 10939133170, 29661655793
OFFSET
1,1
REFERENCES
R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1978.
LINKS
FORMULA
For n even, a(n) = 2*A000055(n) - A000081(n/2), for n odd, a(n) = 2*A000055(n).
G.f.: 2*f(x) - f(x)^2 where f(x) is the g.f. of A000081. - Andrew Howroyd, Nov 02 2019
PROG
(PARI) \\ here TreeGf is A000081 as g.f.
TreeGf(N)={my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)}
seq(n)={Vec(2*TreeGf(n) - TreeGf(n)^2)} \\ Andrew Howroyd, Nov 02 2019
CROSSREFS
Row sums of A122085.
Antidiagonal sums of A329054.
Same as A125702 except for n = 1.
Sequence in context: A277631 A277633 A001037 * A082594 A376050 A051850
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Oct 19 2006
EXTENSIONS
STATUS
approved