login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A122087
Triangle read by rows: T(n,k) = number of unlabeled free bicolored trees with n nodes (n >= 1) and k (1 <= k <= floor(n/2), except k = 0 if n = 1 ) nodes of one color and n-k nodes of the other color (the colors are interchangeable).
1
1, 1, 1, 1, 1, 1, 2, 1, 2, 3, 1, 3, 7, 1, 3, 10, 9, 1, 4, 14, 28, 1, 4, 19, 45, 37, 1, 5, 24, 73, 132, 1, 5, 30, 105, 242, 168, 1, 6, 37, 152, 412, 693, 1, 6, 44, 204, 660, 1349, 895, 1, 7, 52, 274, 1008, 2472, 3927, 1, 7, 61, 351, 1479, 4219, 8105, 5097, 1, 8
OFFSET
1,7
REFERENCES
R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1978.
LINKS
FORMULA
T(n,k) = A329054(k, n-k) for 2*k < n; T(2*n,n) = A119856(n). - Andrew Howroyd, Apr 04 2023
EXAMPLE
K M N gives the number N of unlabeled free bicolored trees with K nodes of one color and M nodes of the other color.
0 1 1
Total( 1) = 1
1 1 1
Total( 2) = 1
1 2 1
Total( 3) = 1
1 3 1
2 2 1
Total( 4) = 2
1 4 1
2 3 2
Total( 5) = 3
1 5 1
2 4 2
3 3 3
Total( 6) = 6
1 6 1
2 5 3
3 4 7
Total( 7) = 11
1 7 1
2 6 3
3 5 10
4 4 9
Total( 8) = 23
From Andrew Howroyd, Apr 05 2023: (Start)
Triangle begins:
n\k| 0 1 2 3 4 5 6
----+----------------------------
1 | 1;
2 | . 1;
3 | . 1;
4 | . 1, 1;
5 | . 1, 2;
6 | . 1, 2, 3;
7 | . 1, 3, 7;
8 | . 1, 3, 10, 9;
9 | . 1, 4, 14, 28;
10 | . 1, 4, 19, 45, 37;
11 | . 1, 5, 24, 73, 132;
12 | . 1, 5, 30, 105, 242, 168;
...
(End)
CROSSREFS
Row sums give A000055.
Cf. A119856, A329054, A362019 (labeled version).
Sequence in context: A144215 A254539 A283827 * A139642 A264744 A354322
KEYWORD
nonn,tabf
AUTHOR
N. J. A. Sloane, Oct 19 2006
STATUS
approved