

A122087


Triangle read by rows: T(n,k) = number of unlabeled free bicolored trees with n nodes (n >= 1) and k (1 <= k <= floor(n/2), except k = 0 if n = 1 ) nodes of one color and nk nodes of the other color (the colors are interchangeable).


1



1, 1, 1, 1, 1, 1, 2, 1, 2, 3, 1, 3, 7, 1, 3, 10, 9, 1, 4, 14, 28, 1, 4, 19, 45, 37, 1, 5, 24, 73, 132, 1, 5, 30, 105, 242, 168, 1, 6, 37, 152, 412, 693, 1, 6, 44, 204, 660, 1349, 895, 1, 7, 52, 274, 1008, 2472, 3927, 1, 7, 61, 351, 1479, 4219, 8105, 5097, 1, 8
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,7


REFERENCES

R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1978.


LINKS

R. W. Robinson, Rows 1 through 30, flattened


EXAMPLE

K M N gives the number N of unlabeled free bicolored trees with K nodes of one color and M nodes of the other color.
0 1 1
Total( 1) = 1
1 1 1
Total( 2) = 1
1 2 1
Total( 3) = 1
1 3 1
2 2 1
Total( 4) = 2
1 4 1
2 3 2
Total( 5) = 3
1 5 1
2 4 2
3 3 3
Total( 6) = 6
1 6 1
2 5 3
3 4 7
Total( 7) = 11
1 7 1
2 6 3
3 5 10
4 4 9
Total( 8) = 23


CROSSREFS

Row sums give A000055.
Sequence in context: A144215 A254539 A283827 * A139642 A264744 A143604
Adjacent sequences: A122084 A122085 A122086 * A122088 A122089 A122090


KEYWORD

nonn,tabf


AUTHOR

N. J. A. Sloane, Oct 19 2006


STATUS

approved



