The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A144215 Triangle read by rows: T(n,k) is the number of forests on n unlabeled nodes with all nodes of degree <= k (n>=1, 0 <= k <= n-1). 5
 1, 1, 2, 1, 2, 3, 1, 3, 5, 6, 1, 3, 7, 9, 10, 1, 4, 11, 17, 19, 20, 1, 4, 15, 28, 34, 36, 37, 1, 5, 22, 52, 67, 73, 75, 76, 1, 5, 30, 90, 129, 144, 150, 152, 153, 1, 6, 42, 170, 264, 305, 320, 326, 328, 329, 1, 6, 56, 310, 542, 645, 686, 701, 707, 709, 710 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS Andrew Howroyd, Table of n, a(n) for n = 1..1275 (first 50 rows) R. Neville, Graphs whose vertices are forests with bounded degree, Graph Theory Notes of New York, LIV (2008), 12-21. FORMULA Column k is Euler transform of column k of A144528. - Andrew Howroyd, Dec 18 2020 EXAMPLE Triangle begins:   1   1 2   1 2  3   1 3  5  6   1 3  7  9 10   1 4 11 17 19 20   1 4 15 28 34 36 37   ... From Andrew Howroyd, Dec 18 2020: (Start) Formatted as an array to show the full columns: ======================================================== n\k  | 0 1  2   3    4    5    6    7    8    9   10 -----+--------------------------------------------------    1 | 1 1  1   1    1    1    1    1    1    1    1 ...    2 | 1 2  2   2    2    2    2    2    2    2    2 ...    3 | 1 2  3   3    3    3    3    3    3    3    3 ...    4 | 1 3  5   6    6    6    6    6    6    6    6 ...    5 | 1 3  7   9   10   10   10   10   10   10   10 ...    6 | 1 4 11  17   19   20   20   20   20   20   20 ...    7 | 1 4 15  28   34   36   37   37   37   37   37 ...    8 | 1 5 22  52   67   73   75   76   76   76   76 ...    9 | 1 5 30  90  129  144  150  152  153  153  153 ...   10 | 1 6 42 170  264  305  320  326  328  329  329 ...   11 | 1 6 56 310  542  645  686  701  707  709  710 ...   12 | 1 7 77 600 1161 1431 1536 1577 1592 1598 1600 ... (End) PROG (PARI) \\ Here V(n, k) gives column k of A144528. EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)} MSet(p, k)={my(n=serprec(p, x)-1); if(min(k, n)<1, 1 + O(x*x^n), polcoef(exp( sum(i=1, min(k, n), (y^i + O(y*y^k))*subst(p + O(x*x^(n\i)), x, x^i)/i ))/(1-y + O(y*y^k)), k, y))} V(n, k)={my(g=1+O(x)); for(n=2, n, g=x*MSet(g, k-1)); Vec(1 + x*MSet(g, k) + (subst(g, x, x^2) - g^2)/2)} M(n, m=n)={Mat(vector(m, k, EulerT(V(n, k-1)[2..1+n])~))} { my(T=M(12)); for(n=1, #T~, print(T[n, 1..n])) } \\ Andrew Howroyd, Dec 18 2020 CROSSREFS The final diagonal gives A005195. Column k=2 is A000041. Cf. A144528, A144529, A339788. Sequence in context: A104468 A293003 A110062 * A254539 A283827 A122087 Adjacent sequences:  A144212 A144213 A144214 * A144216 A144217 A144218 KEYWORD nonn,tabl AUTHOR N. J. A. Sloane, Dec 20 2008 EXTENSIONS Terms a(29) and beyond from Andrew Howroyd, Dec 18 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 13 14:33 EDT 2021. Contains 343860 sequences. (Running on oeis4.)