OFFSET
1,8
COMMENTS
A forest is an acyclic graph.
(The component trees here are not rooted. - N. J. A. Sloane, Dec 19 2020)
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1275 (rows 1..50)
Eric Weisstein's World of Mathematics, Maximum Vertex Degree
EXAMPLE
Triangle begins:
1;
1, 1;
1, 1, 1;
1, 2, 2, 1;
1, 2, 4, 2, 1;
1, 3, 7, 6, 2, 1;
1, 3, 11, 13, 6, 2, 1;
1, 4, 17, 30, 15, 6, 2, 1;
1, 4, 25, 60, 39, 15, 6, 2, 1;
1, 5, 36, 128, 94, 41, 15, 6, 2, 1;
1, 5, 50, 254, 232, 103, 41, 15, 6, 2, 1;
...
PROG
(PARI) \\ Here V(n, k) gives column k of A144528.
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
MSet(p, k)={my(n=serprec(p, x)-1); if(min(k, n)<1, 1 + O(x*x^n), polcoef(exp( sum(i=1, min(k, n), (y^i + O(y*y^k))*subst(p + O(x*x^(n\i)), x, x^i)/i ))/(1-y + O(y*y^k)), k, y))}
V(n, k)={my(g=1+O(x)); for(n=2, n, g=x*MSet(g, k-1)); Vec(1 + x*MSet(g, k) + (subst(g, x, x^2) - g^2)/2)}
M(n, m=n)={my(v=vector(m, k, EulerT(V(n, k-1)[2..1+n])~)); Mat(vector(m, k, v[k]-if(k>1, v[k-1])))}
{ my(T=M(12)); for(n=1, #T~, print(T[n, 1..n])) }
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Dec 18 2020
STATUS
approved