login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A339788
Triangle read by rows: T(n,k) is the number of forests with n unlabeled vertices and maximum vertex degree k, (0 <= k < n).
3
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 4, 2, 1, 1, 3, 7, 6, 2, 1, 1, 3, 11, 13, 6, 2, 1, 1, 4, 17, 30, 15, 6, 2, 1, 1, 4, 25, 60, 39, 15, 6, 2, 1, 1, 5, 36, 128, 94, 41, 15, 6, 2, 1, 1, 5, 50, 254, 232, 103, 41, 15, 6, 2, 1, 1, 6, 70, 523, 561, 270, 105, 41, 15, 6, 2, 1
OFFSET
1,8
COMMENTS
A forest is an acyclic graph.
(The component trees here are not rooted. - N. J. A. Sloane, Dec 19 2020)
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1275 (rows 1..50)
Eric Weisstein's World of Mathematics, Maximum Vertex Degree
FORMULA
T(n,k) = A144215(n,k) - A144215(n,k-1) for k > 0.
EXAMPLE
Triangle begins:
1;
1, 1;
1, 1, 1;
1, 2, 2, 1;
1, 2, 4, 2, 1;
1, 3, 7, 6, 2, 1;
1, 3, 11, 13, 6, 2, 1;
1, 4, 17, 30, 15, 6, 2, 1;
1, 4, 25, 60, 39, 15, 6, 2, 1;
1, 5, 36, 128, 94, 41, 15, 6, 2, 1;
1, 5, 50, 254, 232, 103, 41, 15, 6, 2, 1;
...
PROG
(PARI) \\ Here V(n, k) gives column k of A144528.
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
MSet(p, k)={my(n=serprec(p, x)-1); if(min(k, n)<1, 1 + O(x*x^n), polcoef(exp( sum(i=1, min(k, n), (y^i + O(y*y^k))*subst(p + O(x*x^(n\i)), x, x^i)/i ))/(1-y + O(y*y^k)), k, y))}
V(n, k)={my(g=1+O(x)); for(n=2, n, g=x*MSet(g, k-1)); Vec(1 + x*MSet(g, k) + (subst(g, x, x^2) - g^2)/2)}
M(n, m=n)={my(v=vector(m, k, EulerT(V(n, k-1)[2..1+n])~)); Mat(vector(m, k, v[k]-if(k>1, v[k-1])))}
{ my(T=M(12)); for(n=1, #T~, print(T[n, 1..n])) }
CROSSREFS
Row sums are A005195.
Cf. A144215 (max degree <= k), A144528, A238414 (trees), A263293 (graphs).
Sequence in context: A034851 A172453 A172479 * A122085 A209612 A209805
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Dec 18 2020
STATUS
approved