login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A122088
Add 10, subtract 5, add 10, subtract 5, ad infinitum.
1
1, 11, 6, 16, 11, 21, 16, 26, 21, 31, 26, 36, 31, 41, 36, 46, 41, 51, 46, 56, 51, 61, 56, 66, 61, 71, 66, 76, 71, 81, 76, 86, 81, 91, 86, 96, 91, 101, 96, 106, 101, 111, 106, 116, 111, 121, 116, 126, 121, 131, 126, 136, 131, 141, 136, 146, 141, 151, 146, 156, 151, 161, 156, 166, 161, 171
OFFSET
1,2
COMMENTS
A brain teaser.
FORMULA
a(2j+1) = 5j+1, a(2j) = 5j+6. - Robert G. Wilson v, Nov 26 2006; R. J. Mathar, Jul 09 2009
From R. J. Mathar, Jul 09 2009: (Start)
G.f.: x*(1+10*x-6*x^2)/((1+x)*(1-x)^2).
a(n) = 9/4+5*n/2+15*(-1)^n/4. (End)
a(n) = a(n-1)+a(n-2)-a(n-3). - Wesley Ivan Hurt, Mar 14 2015
MAPLE
A122088:=n->9/4 + 5*n/2 + 15*(-1)^n/4: seq(A122088(n), n=1..50); # Wesley Ivan Hurt, Mar 14 2015
MATHEMATICA
Table[9/4 + 5*n/2 + 15*(-1)^n/4, {n, 50}] (* Wesley Ivan Hurt, Mar 14 2015 *)
LinearRecurrence[{1, 1, -1}, {1, 11, 6}, 70] (* Harvey P. Dale, Dec 06 2017 *)
PROG
(Magma) [9/4 + 5*n/2 + 15*(-1)^n/4 : n in [1..50]]; // Wesley Ivan Hurt, Mar 14 2015
CROSSREFS
Sequence in context: A122098 A347518 A115943 * A304053 A190624 A241308
KEYWORD
nonn,easy
AUTHOR
Chris H. (chrishale(AT)deotte.com), Oct 17 2006
EXTENSIONS
Present definition supplied by R. J. Mathar, Oct 20 2006
More terms from Robert G. Wilson v, Nov 26 2006
Formulas adapted to offset by R. J. Mathar, Jul 09 2009
STATUS
approved