

A122083


Triangle read by rows in which row n gives the number of unlabeled bicolored graphs having k nodes of one color and nk nodes of the other color, with no isolated nodes; the color classes are not interchangeable.


3



1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 3, 1, 0, 0, 1, 5, 5, 1, 0, 0, 1, 8, 17, 8, 1, 0, 0, 1, 11, 42, 42, 11, 1, 0, 0, 1, 15, 91, 179, 91, 15, 1, 0, 0, 1, 19, 180, 633, 633, 180, 19, 1, 0, 0, 1, 24, 328, 2001, 3835, 2001, 328, 24, 1, 0, 0, 1, 29, 565, 5745, 20755, 20755
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,13


REFERENCES

J. G. Lee, Almost Distributive Lattice Varieties, Algebra Universalis, 21 (1985), 280304.
R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.


LINKS



EXAMPLE

K M N Gives the number N of unlabeled bicolored graphs with no isolated nodes and having K nodes of one color and M nodes of the other color.
0 0 1
Total( 0)= 1
0 1 0
1 0 0
Total( 1)= 0
0 2 0
1 1 1
2 0 0
Total( 2)= 1
0 3 0
1 2 1
2 1 1
3 0 0
Total( 3)= 2
0 4 0
1 3 1
2 2 3
3 1 1
4 0 0
Total( 4)= 5
0 5 0
1 4 1
2 3 5
3 2 5
4 1 1
5 0 0
Total( 5)= 12
0 6 0
1 5 1
2 4 8
3 3 17
4 2 8
5 1 1
6 0 0
Total( 6)= 35


CROSSREFS

Row sums give A055192. See A056152 for a version of this triangle with the bounding zeros in each row.


KEYWORD



AUTHOR



STATUS

approved



