login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277633
Number of aperiodic necklaces (Lyndon words) with k<=8 black beads and n-k white beads.
0
1, 2, 1, 2, 3, 6, 9, 18, 30, 56, 98, 180, 311, 546, 915, 1520, 2440, 3855, 5916, 8935, 13178, 19138, 27264, 38303, 52950, 72311, 97419, 129839, 171066, 223260, 288498, 369708, 469708, 592363, 741433, 921933, 1138761, 1398343, 1706956, 2072696, 2503513, 3009482, 3600515, 4289032, 5087253, 6010305, 7073122, 8293962
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (1, 3, -2, -4, 1, 4, -1, -5, 2, 7, -1, -6, 0, 4, 0, -6, -1, 7, 2, -5, -1, 4, 1, -4, -2, 3, 1, -1).
FORMULA
G.f.: 1 + x + x/(1-x) + 1/2*x^2*(1/(1-x)^2 - 1/(1-x^2)) + 1/3*x^3*(1/(1-x)^3 - 1/(1-x^3)) + 1/4*x^4*(1/(1-x)^4 - 1/(1-x^2)^2) + 1/5*x^5*(1/(1-x)^5 - 1/(1-x^5)) + 1/6*x^6*(1/(1-x)^6 - 1/(1-x^2)^3 - 1/(1-x^3)^2 + 1/(1-x^6)) + 1/7*x^7*(1/(1-x)^7 - 1/(1-x^7)) + 1/8*x^8*(1/(1-x)^8 - 1/(1-x^2)^4).
MATHEMATICA
(* The g.f. for the number of aperiodic necklaces (Lyndon words) with k<=m black beads and n-k white beads. Here we have the case m=8 *)
gf[x_, m_]:=Sum[x^i/i Plus@@(MoebiusMu[#](1-x^#)^(-(i/#))&/@Divisors[i]), {i, 1, m}]+x+1
CROSSREFS
Cf. A001037 (k arbitrary), A008747 (k<=3), A277619 (k<=4), A277629 (k<=5), A277631 (k<=6).
The Mathematica section of A032168 gives the g.f. for k=m black beads and n-k white beads.
Sequence in context: A339408 A277629 A277631 * A001037 A122086 A082594
KEYWORD
nonn,easy
AUTHOR
Herbert Kociemba, Oct 24 2016
STATUS
approved