login
A277633
Number of aperiodic necklaces (Lyndon words) with k<=8 black beads and n-k white beads.
0
1, 2, 1, 2, 3, 6, 9, 18, 30, 56, 98, 180, 311, 546, 915, 1520, 2440, 3855, 5916, 8935, 13178, 19138, 27264, 38303, 52950, 72311, 97419, 129839, 171066, 223260, 288498, 369708, 469708, 592363, 741433, 921933, 1138761, 1398343, 1706956, 2072696, 2503513, 3009482, 3600515, 4289032, 5087253, 6010305, 7073122, 8293962
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (1, 3, -2, -4, 1, 4, -1, -5, 2, 7, -1, -6, 0, 4, 0, -6, -1, 7, 2, -5, -1, 4, 1, -4, -2, 3, 1, -1).
FORMULA
G.f.: 1 + x + x/(1-x) + 1/2*x^2*(1/(1-x)^2 - 1/(1-x^2)) + 1/3*x^3*(1/(1-x)^3 - 1/(1-x^3)) + 1/4*x^4*(1/(1-x)^4 - 1/(1-x^2)^2) + 1/5*x^5*(1/(1-x)^5 - 1/(1-x^5)) + 1/6*x^6*(1/(1-x)^6 - 1/(1-x^2)^3 - 1/(1-x^3)^2 + 1/(1-x^6)) + 1/7*x^7*(1/(1-x)^7 - 1/(1-x^7)) + 1/8*x^8*(1/(1-x)^8 - 1/(1-x^2)^4).
MATHEMATICA
(* The g.f. for the number of aperiodic necklaces (Lyndon words) with k<=m black beads and n-k white beads. Here we have the case m=8 *)
gf[x_, m_]:=Sum[x^i/i Plus@@(MoebiusMu[#](1-x^#)^(-(i/#))&/@Divisors[i]), {i, 1, m}]+x+1
CROSSREFS
Cf. A001037 (k arbitrary), A008747 (k<=3), A277619 (k<=4), A277629 (k<=5), A277631 (k<=6).
The Mathematica section of A032168 gives the g.f. for k=m black beads and n-k white beads.
Sequence in context: A339408 A277629 A277631 * A001037 A122086 A082594
KEYWORD
nonn,easy
AUTHOR
Herbert Kociemba, Oct 24 2016
STATUS
approved