login
A277619
Number of aperiodic necklaces (Lyndon words) with k<=4 black beads and n-k white beads.
4
1, 2, 1, 2, 3, 6, 8, 14, 19, 28, 37, 51, 64, 84, 103, 129, 155, 189, 222, 265, 307, 359, 411, 474, 536, 611, 685, 772, 859, 960, 1060, 1176, 1291, 1422, 1553, 1701, 1848, 2014, 2179, 2363, 2547, 2751, 2954, 3179, 3403, 3649, 3895, 4164, 4432, 4725, 5017
OFFSET
0,2
FORMULA
G.f.: (1+x-3*x^2-2*x^3+3*x^4+5*x^5-3*x^7+x^9)/((-1+x)^4*(1+x)^2*(1+x+x^2)).
a(n) = a(n-1)+2*a(n-2)-a(n-3)-2*a(n-4)-a(n-5)+2*a(n-6)+a(n-7)-a(n-8) for n>7. - Colin Barker, Oct 29 2016
EXAMPLE
a(6)=8. The aperiodic necklaces are BWWWWW, BBWWWW, BWBWWW, BBBWWW, BBWBWW, BBWWBW, BBBBWW, and BBBWBW.
MATHEMATICA
(* The g.f. for the number of aperiodic necklaces (Lyndon words) with k<=m black beads and n-k white beads is *)
gf[x_, m_]:=Sum[x^i/i Plus@@(MoebiusMu[#](1-x^#)^(-(i/#))&/@Divisors[i]), {i, 1, m}]+x+1
(* Here we have the case m=4 *)
PROG
(PARI) Vec((1+x-3*x^2-2*x^3+3*x^4+5*x^5-3*x^7+x^9)/((-1+x)^4*(1+x)^2*(1+x+x^2)) + O(x^60)) \\ Colin Barker, Oct 29 2016
CROSSREFS
Cf. A001037 (k arbitrary), A008747 (k<=3).
Mathematica section of A032168 gives g.f. for k=m black beads and n-k white beads.
Sequence in context: A341649 A056493 A289352 * A001371 A339408 A277629
KEYWORD
nonn,easy
AUTHOR
Herbert Kociemba, Oct 24 2016
STATUS
approved