login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277619
Number of aperiodic necklaces (Lyndon words) with k<=4 black beads and n-k white beads.
4
1, 2, 1, 2, 3, 6, 8, 14, 19, 28, 37, 51, 64, 84, 103, 129, 155, 189, 222, 265, 307, 359, 411, 474, 536, 611, 685, 772, 859, 960, 1060, 1176, 1291, 1422, 1553, 1701, 1848, 2014, 2179, 2363, 2547, 2751, 2954, 3179, 3403, 3649, 3895, 4164, 4432, 4725, 5017
OFFSET
0,2
FORMULA
G.f.: (1+x-3*x^2-2*x^3+3*x^4+5*x^5-3*x^7+x^9)/((-1+x)^4*(1+x)^2*(1+x+x^2)).
a(n) = a(n-1)+2*a(n-2)-a(n-3)-2*a(n-4)-a(n-5)+2*a(n-6)+a(n-7)-a(n-8) for n>7. - Colin Barker, Oct 29 2016
EXAMPLE
a(6)=8. The aperiodic necklaces are BWWWWW, BBWWWW, BWBWWW, BBBWWW, BBWBWW, BBWWBW, BBBBWW, and BBBWBW.
MATHEMATICA
(* The g.f. for the number of aperiodic necklaces (Lyndon words) with k<=m black beads and n-k white beads is *)
gf[x_, m_]:=Sum[x^i/i Plus@@(MoebiusMu[#](1-x^#)^(-(i/#))&/@Divisors[i]), {i, 1, m}]+x+1
(* Here we have the case m=4 *)
PROG
(PARI) Vec((1+x-3*x^2-2*x^3+3*x^4+5*x^5-3*x^7+x^9)/((-1+x)^4*(1+x)^2*(1+x+x^2)) + O(x^60)) \\ Colin Barker, Oct 29 2016
CROSSREFS
Cf. A001037 (k arbitrary), A008747 (k<=3).
Mathematica section of A032168 gives g.f. for k=m black beads and n-k white beads.
Sequence in context: A341649 A056493 A289352 * A001371 A339408 A277629
KEYWORD
nonn,easy
AUTHOR
Herbert Kociemba, Oct 24 2016
STATUS
approved