OFFSET
0,2
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence, in two entries, N0045 and N0285).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
T. D. Noe, Table of n, a(n) for n = 0..400
Jairo Bochi and Piotr Laskawiec, Spectrum maximizing products are not generically unique, arXiv:2301.12574 [math.OC], 2023.
E. N. Gilbert and J. Riordan, Symmetry types of periodic sequences, Illinois J. Math., 5 (1961), 657-665.
F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc. [Cached copy, with permission, pdf format only]
FORMULA
a(n) = Sum_{ d divides n } mu(d)*A000029(n/d).
From Herbert Kociemba, Nov 28 2016: (Start)
More generally, for n>0, gf(k) is the g.f. for the number of bracelets with primitive period n and beads of k colors.
gf(k): Sum_{n>=1} mu(n)*( -log(1-k*x^n)/n + Sum_{i=0..2} binomial(k,i)x^(n*i)/(1-k*x^(2*n)) )/2. (End)
MAPLE
MATHEMATICA
a29[n_] := a29[n] = (s = If[OddQ[n], 2^((n-1)/2) , 2^(n/2 - 2) + 2^(n/2 - 1)]; a29[0] = 1; Do[s = s + EulerPhi[d]*2^(n/d)/(2*n), {d, Divisors[n]}]; s); a[n_] := Sum[ MoebiusMu[d]*a29[n/d], {d, Divisors[n]}]; a[0] = 1; Table[ a[n], {n, 0, 34}] (* Jean-François Alcover, Oct 04 2011 *)
mx=40; gf[x_, k_]:=Sum[ MoebiusMu[n]*(-Log[1-k*x^n]/n+Sum[Binomial[k, i]x^(n i), {i, 0, 2}]/( 1-k x^(2n)))/2, {n, mx}]; ReplacePart[CoefficientList[Series[gf[x, 2], {x, 0, mx}], x], 1->1] (* Herbert Kociemba, Nov 28 2016 *)
PROG
(Python)
from sympy import divisors, totient, mobius
def a000029(n):
return 1 if n<1 else ((2**(n//2+1) if n%2 else 3*2**(n//2-1)) + sum(totient(n//d)*2**d for d in divisors(n))//n)//2
def a(n):
return 1 if n<1 else sum(mobius(d)*a000029(n//d) for d in divisors(n))
print([a(n) for n in range(51)]) # Indranil Ghosh, Apr 23 2017
CROSSREFS
KEYWORD
nonn,easy,nice
AUTHOR
EXTENSIONS
More terms from Christian G. Bower
Entry revised by N. J. A. Sloane, Jun 10 2012
STATUS
approved