login
A339408
Number of compositions (ordered partitions) of n into an even number of primes.
2
1, 0, 0, 0, 1, 2, 1, 2, 3, 6, 9, 8, 16, 24, 40, 52, 72, 112, 172, 256, 364, 528, 804, 1188, 1757, 2548, 3782, 5614, 8308, 12214, 17979, 26586, 39352, 58044, 85608, 126248, 186630, 275556, 406737, 600066, 885952, 1308250, 1931473, 2850692, 4207952, 6212110, 9171800, 13538980
OFFSET
0,6
FORMULA
G.f.: (1/2) * (1 / (1 - Sum_{k>=1} x^prime(k)) + 1 / (1 + Sum_{k>=1} x^prime(k))).
EXAMPLE
a(8) = 3 because we have [5, 3], [3, 5] and [2, 2, 2, 2].
MAPLE
b:= proc(n, t) option remember; `if`(n=0, t, add(
b(n-ithprime(j), 1-t), j=1..numtheory[pi](n)))
end:
a:= n-> b(n, 1):
seq(a(n), n=0..55); # Alois P. Heinz, Dec 03 2020
MATHEMATICA
nmax = 47; CoefficientList[Series[(1/2) (1/(1 - Sum[x^Prime[k], {k, 1, nmax}]) + 1/(1 + Sum[x^Prime[k], {k, 1, nmax}])), {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Dec 03 2020
STATUS
approved