login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A339406
Number of partitions of n into an even number of parts that are not multiples of 4.
3
1, 0, 1, 1, 3, 2, 5, 5, 10, 9, 16, 17, 29, 28, 44, 48, 73, 76, 110, 121, 172, 185, 253, 282, 381, 417, 549, 616, 802, 889, 1137, 1279, 1620, 1810, 2260, 2549, 3161, 3544, 4346, 4906, 5979, 6720, 8120, 9164, 11014, 12392, 14788, 16682, 19820, 22297, 26337, 29682, 34921, 39267
OFFSET
0,5
LINKS
FORMULA
G.f.: (1/2) * (Product_{k>=1} (1 - x^(4*k)) / (1 - x^k) + Product_{k>=1} (1 + x^(4*k)) / (1 + x^k)).
a(n) = (A001935(n) + A261734(n)) / 2.
EXAMPLE
a(6) = 5 because we have [5, 1], [3, 3], [3, 1, 1, 1], [2, 2, 1, 1] and [1, 1, 1, 1, 1, 1].
MAPLE
b:= proc(n, i, t) option remember; `if`(n=0, t, `if`(i<1, 0,
b(n, i-1, t)+`if`(irem(i, 4)=0, 0, b(n-i, min(n-i, i), 1-t))))
end:
a:= n-> b(n$2, 1):
seq(a(n), n=0..55); # Alois P. Heinz, Dec 03 2020
MATHEMATICA
nmax = 53; CoefficientList[Series[(1/2) (Product[(1 - x^(4 k))/(1 - x^k), {k, 1, nmax}] + Product[(1 + x^(4 k))/(1 + x^k), {k, 1, nmax}]), {x, 0, nmax}], x]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Dec 03 2020
STATUS
approved