login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A186545
Sequence of coefficients arising in study of generating function for A067619.
2
1, -1, 3, -2, 5, -5, 8, -7, 13, -13, 18, -19, 26, -29, 39, -40, 52, -60, 72, -81, 101, -113, 134, -152, 181, -206, 243, -273, 318, -365, 418, -473, 549, -620, 710, -803, 914, -1034, 1177, -1322, 1498, -1691, 1904, -2139, 2416, -2704, 3036, -3400, 3811, -4261
OFFSET
1,3
LINKS
Arnold Knopfmacher and Neville Robbins, Identities for the total number of parts in partitions of integers, Util. Math. 67 (2005), 9-18. (See last line of text.)
MATHEMATICA
nmax = 50; A067619 = CoefficientList[Series[Sum[k*x^(2*k - 1)*Product[1 + x^(2*j - 1), {j, 1, k - 1}], {k, 1, nmax + 1}], {x, 0, nmax + 1}], x]; A000700 = CoefficientList[Series[Product[1 + x^(2 k + 1), {k, 0, nmax + 1}], {x, 0, nmax + 1}], x]; b = ConstantArray[0, nmax + 1]; b[[1]] = 0; Do[b[[n + 1]] = (A067619[[n + 1]] - Sum[A000700[[n - k + 1]]*b[[k + 1]], {k, 0, n - 1}]) / A000700[[1]], {n, 1, nmax}]; Rest[b] (* Vaclav Kotesovec, Jun 28 2016 *)
CROSSREFS
Sequence in context: A093048 A141732 A325695 * A008623 A035546 A339406
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Feb 23 2011
EXTENSIONS
More terms from Vaclav Kotesovec, Jun 28 2016
STATUS
approved