OFFSET
0,10
FORMULA
Conjectures from Colin Barker, May 15 2019: (Start)
G.f.: x^7*(1 + x + 2*x^2) / ((1 - x)^3*(1 + x)^2*(1 + x^2)*(1 + x + x^2)).
a(n) = a(n-2) + a(n-3) + a(n-4) - a(n-5) - a(n-6) - a(n-7) + a(n-9) for n>9.
(End)
a(n) = A325696(n)/6. - Alois P. Heinz, Jun 18 2020
EXAMPLE
The a(7) = 1 through a(15) = 12 partitions (A = 10, B = 11, C = 12):
(421) (521) (432) (631) (542) (543) (643) (653) (654)
(531) (721) (632) (732) (652) (842) (753)
(621) (641) (741) (742) (851) (762)
(731) (831) (751) (932) (843)
(821) (921) (832) (941) (852)
(841) (A31) (861)
(931) (B21) (942)
(A21) (951)
(A32)
(A41)
(B31)
(C21)
MATHEMATICA
Table[Length[Select[IntegerPartitions[n, {3}], UnsameQ@@#&&#[[1]]!=#[[2]]+#[[3]]&]], {n, 0, 30}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 15 2019
STATUS
approved