login
A325697
Number of rooted trees with n vertices with no proper terminal subtree appearing at only one position.
0
1, 0, 1, 1, 2, 2, 5, 5, 11, 13, 27, 30, 69, 76, 168
OFFSET
1,5
COMMENTS
The Matula-Goebel numbers of these trees are given by A325661.
EXAMPLE
The a(4) = 1 through a(9) = 11 rooted trees:
(ooo) (oooo) (ooooo) (oooooo) (ooooooo) (oooooooo)
((o)(o)) (o(o)(o)) ((oo)(oo)) (o(oo)(oo)) ((ooo)(ooo))
(oo(o)(o)) (ooo(o)(o)) (oo(oo)(oo))
((o)(o)(o)) (o(o)(o)(o)) (oooo(o)(o))
(((o))((o))) (o((o))((o))) (oo(o)(o)(o))
(((oo))((oo)))
((o)(o)(o)(o))
((o(o))(o(o)))
(oo((o))((o)))
((o)((o))((o)))
((((o)))(((o))))
MATHEMATICA
urt[n_]:=Join@@Table[Union[Sort/@Tuples[urt/@ptn]], {ptn, IntegerPartitions[n-1]}];
Table[Length[Select[urt[n], !MemberQ[Length/@Split[Sort[Extract[#, Most[Position[#, _List]]]]], 1]&]], {n, 15}]
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, May 17 2019
STATUS
approved