OFFSET
0,4
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000
FORMULA
a(n) = Sum(k*A265255(n,k), k>=0).
G.f.: g(x) = x(1 - x + x^2)/((1-x^4)*Product_{j>=1}(1-x^j)).
From Vaclav Kotesovec, Jan 01 2016: (Start)
a(n) ~ exp(Pi*sqrt(2*n/3)) / (8*Pi*sqrt(2*n)).
(End)
EXAMPLE
a(6) = 5 because in [1,1,1,3], [1,2,3], [1,5] we have 1+2+2 odd singletons, while the other 8 partitions of 6 have no odd singletons.
MAPLE
g := x*(1-x+x^2)/((1-x^4)*mul(1-x^j, j = 1 .. 80)): gser := series(g, x = 0, 55): seq(coeff(gser, x, m), m = 0 .. 50);
# second Maple program:
b:= proc(n, i) option remember; `if`(n=0, [1, 0],
`if`(i<1, 0, add((p-> `if`(j=1 and i::odd, p+
[0, p[1]], p))(b(n-i*j, i-1)), j=0..n/i)))
end:
a:= n-> b(n$2)[2]:
seq(a(n), n=0..80); # Alois P. Heinz, Jan 01 2016
MATHEMATICA
nmax = 50; CoefficientList[Series[x*(1-x+x^2)/(1-x^4) * Product[1/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 01 2016 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Jan 01 2016
STATUS
approved