login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A265257
Number of odd singletons in all partitions of n (n>=0).
3
0, 1, 0, 2, 2, 5, 5, 11, 13, 23, 28, 45, 57, 86, 108, 156, 199, 276, 350, 475, 601, 798, 1005, 1312, 1646, 2120, 2643, 3365, 4178, 5264, 6500, 8122, 9981, 12375, 15136, 18638, 22697, 27779, 33679, 40993, 49504, 59947, 72109
OFFSET
0,4
LINKS
FORMULA
a(n) = Sum(k*A265255(n,k), k>=0).
G.f.: g(x) = x(1 - x + x^2)/((1-x^4)*Product_{j>=1}(1-x^j)).
From Vaclav Kotesovec, Jan 01 2016: (Start)
a(n) = 1/4 * A000070(n) - 3/4 * A087787(n) + 1/2 * A092295(n).
a(n) ~ exp(Pi*sqrt(2*n/3)) / (8*Pi*sqrt(2*n)).
(End)
EXAMPLE
a(6) = 5 because in [1,1,1,3], [1,2,3], [1,5] we have 1+2+2 odd singletons, while the other 8 partitions of 6 have no odd singletons.
MAPLE
g := x*(1-x+x^2)/((1-x^4)*mul(1-x^j, j = 1 .. 80)): gser := series(g, x = 0, 55): seq(coeff(gser, x, m), m = 0 .. 50);
# second Maple program:
b:= proc(n, i) option remember; `if`(n=0, [1, 0],
`if`(i<1, 0, add((p-> `if`(j=1 and i::odd, p+
[0, p[1]], p))(b(n-i*j, i-1)), j=0..n/i)))
end:
a:= n-> b(n$2)[2]:
seq(a(n), n=0..80); # Alois P. Heinz, Jan 01 2016
MATHEMATICA
nmax = 50; CoefficientList[Series[x*(1-x+x^2)/(1-x^4) * Product[1/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 01 2016 *)
CROSSREFS
Cf. A265255.
Sequence in context: A079964 A184321 A103891 * A005294 A052943 A325697
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Jan 01 2016
STATUS
approved