login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A092295
Number of partitions of n with even number (or 0) 2's.
5
1, 1, 1, 2, 4, 5, 7, 10, 15, 20, 27, 36, 50, 65, 85, 111, 146, 186, 239, 304, 388, 488, 614, 767, 961, 1191, 1475, 1819, 2243, 2746, 3361, 4096, 4988, 6047, 7322, 8836, 10655, 12801, 15360, 18384, 21978, 26199, 31196, 37062, 43979, 52072, 61579, 72682
OFFSET
0,4
LINKS
FORMULA
a(n) = A000041(n)-a(n-2).
G.f.=1/[(1+x^2)*product(1-x^j, j=1..infinity)]. - Emeric Deutsch, Mar 30 2006
a(n) ~ exp(Pi*sqrt(2*n/3)) / (8*n*sqrt(3)). - Vaclav Kotesovec, Oct 30 2015
EXAMPLE
a(5)=5 because the partitions [5],[4,1],[3,1,1],[2,2,1] and [1,1,1,1,1] of 5 have an even number of 2's ([3,2] and [2,1,1,1] do not qualify).
MAPLE
g:=1/(1+x^2)/product(1-x^j, j=1..70): gser:=series(g, x=0, 50): seq(coeff(gser, x, n), n=0..47); # Emeric Deutsch, Mar 30 2006
MATHEMATICA
nmax = 50; CoefficientList[Series[1/((1+x^2) * Product[1-x^k, {k, 1, nmax}]), {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 30 2015 *)
CROSSREFS
Cf. A087787.
Sequence in context: A351390 A218074 A241735 * A277102 A168639 A275802
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Feb 06 2004
EXTENSIONS
More terms from Benoit Cloitre, Feb 08 2004
STATUS
approved