login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partitions of n with even number (or 0) 2's.
5

%I #16 Oct 30 2015 11:24:49

%S 1,1,1,2,4,5,7,10,15,20,27,36,50,65,85,111,146,186,239,304,388,488,

%T 614,767,961,1191,1475,1819,2243,2746,3361,4096,4988,6047,7322,8836,

%U 10655,12801,15360,18384,21978,26199,31196,37062,43979,52072,61579,72682

%N Number of partitions of n with even number (or 0) 2's.

%H Vaclav Kotesovec, <a href="/A092295/b092295.txt">Table of n, a(n) for n = 0..10000</a>

%F a(n) = A000041(n)-a(n-2).

%F G.f.=1/[(1+x^2)*product(1-x^j, j=1..infinity)]. - _Emeric Deutsch_, Mar 30 2006

%F a(n) ~ exp(Pi*sqrt(2*n/3)) / (8*n*sqrt(3)). - _Vaclav Kotesovec_, Oct 30 2015

%e a(5)=5 because the partitions [5],[4,1],[3,1,1],[2,2,1] and [1,1,1,1,1] of 5 have an even number of 2's ([3,2] and [2,1,1,1] do not qualify).

%p g:=1/(1+x^2)/product(1-x^j,j=1..70): gser:=series(g,x=0,50): seq(coeff(gser,x,n),n=0..47); # _Emeric Deutsch_, Mar 30 2006

%t nmax = 50; CoefficientList[Series[1/((1+x^2) * Product[1-x^k, {k, 1, nmax}]), {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Oct 30 2015 *)

%Y Cf. A087787.

%K easy,nonn

%O 0,4

%A _Vladeta Jovovic_, Feb 06 2004

%E More terms from _Benoit Cloitre_, Feb 08 2004