login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277102
Number of partitions of n containing no part i of multiplicity i-1.
6
1, 1, 1, 2, 4, 5, 7, 10, 15, 21, 28, 37, 50, 67, 88, 115, 150, 193, 248, 317, 402, 508, 640, 802, 1002, 1248, 1545, 1908, 2351, 2887, 3532, 4313, 5251, 6377, 7724, 9334, 11254, 13541, 16253, 19473, 23286, 27791, 33100, 39362, 46723, 55370, 65504, 77377, 91257, 107477, 126380
OFFSET
0,4
LINKS
FORMULA
a(n) = A277100(n,0).
G.f.: g(x) = Product_{i>=1}(1/(1-x^(i+1)) - x^(i(i+1))).
EXAMPLE
a(4) = 4 because we have [1,1,1,1], [1,3], [2,2], and [4]; the partition [1,1,2] does not qualify.
MAPLE
g := (product(1/(1-x^(i+1))-x^(i*(i+1)), i = 1 .. 100))/(1-x): gser := series(g, x = 0, 53): seq(coeff(gser, x, n), n = 0 .. 50);
# second Maple program:
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(`if`(i-1=j, 0, b(n-i*j, i-1)), j=0..n/i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..60); # Alois P. Heinz, Oct 10 2016
MATHEMATICA
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Sum[If[i-1 == j, 0, b[n-i*j, i-1]], {j, 0, n/i}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Dec 11 2016 after Alois P. Heinz *)
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Oct 10 2016
STATUS
approved