login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277104
a(n) = 9*3^n - 15.
1
12, 66, 228, 714, 2172, 6546, 19668, 59034, 177132, 531426, 1594308, 4782954, 14348892, 43046706, 129140148, 387420474, 1162261452, 3486784386, 10460353188, 31381059594, 94143178812, 282429536466, 847288609428, 2541865828314, 7625597484972, 22876792454946
OFFSET
1,1
COMMENTS
a(n) is the first Zagreb index of the Hanoi graph H[n].
The first Zagreb index of a simple connected graph is the sum of the squared degrees of its vertices. Alternately, it is the sum of the degree sums d(i)+d(j) over all edges ij of the graph.
The M-polynomial of the Hanoi graph H[n] is M(H[n],x,y) = 6*x^2*y^3 + (3/2)*(3^n - 5)*x^3*y^3.
LINKS
E. Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102.
I. Gutman and K. C. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50, 2004, 83-92.
Eric. W. Weisstein's World of Mathematics, Hanoi Graph
FORMULA
O.g.f.: 6*x*(2 + 3*x)/((1 - x)*(1 - 3*x)).
E.g.f.: 3*(1 - exp(x))*(2 - 3*exp(x) - 3*exp(2*x)). - Bruno Berselli, Nov 14 2016
a(n) = 3*A168613(n+1). - R. J. Mathar, Apr 07 2022
MAPLE
seq(9*3^n-15, n = 1..30);
MATHEMATICA
Table[9 3^n - 15, {n, 1, 30}] (* Bruno Berselli, Nov 14 2016 *)
PROG
(Magma) [9*3^n-15: n in [1..30]]; // Bruno Berselli, Nov 14 2016
(PARI) a(n)=3^(n+2)-15 \\ Charles R Greathouse IV, Nov 14 2016
CROSSREFS
Cf. A277105.
Sequence in context: A284641 A226235 A045853 * A014787 A007249 A112142
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Nov 05 2016
STATUS
approved