This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A277104 a(n) = 9*3^n - 15. 1
 12, 66, 228, 714, 2172, 6546, 19668, 59034, 177132, 531426, 1594308, 4782954, 14348892, 43046706, 129140148, 387420474, 1162261452, 3486784386, 10460353188, 31381059594, 94143178812, 282429536466, 847288609428, 2541865828314, 7625597484972, 22876792454946 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS a(n) is the first Zagreb index of the Hanoi graph H[n]. The first Zagreb index of a simple connected graph is the sum of the squared degrees of its vertices.  Alternately, it is the sum of the degree sums d(i)+d(j) over all edges ij of the graph. The M-polynomial of the Hanoi graph H[n] is  M(H[n],x,y) = 6*x^2*y^3 + (3/2)*(3^n - 5)*x^3*y^3. LINKS E. Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102. I. Gutman and K. C. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50, 2004, 83-92. Eric. W. Weisstein's World of Mathematics, Hanoi Graph Index entries for linear recurrences with constant coefficients, signature (4,-3). FORMULA O.g.f.: 6*x*(2 + 3*x)/((1 - x)*(1 - 3*x)). E.g.f: 3*(1 - exp(x))*(2 - 3*exp(x) - 3*exp(2*x)). - Bruno Berselli, Nov 14 2016 MAPLE seq(9*3^n-15, n = 1..30); MATHEMATICA Table[9 3^n - 15, {n, 1, 30}] (* Bruno Berselli, Nov 14 2016 *) PROG (MAGMA) [9*3^n-15: n in [1..30]]; // Bruno Berselli, Nov 14 2016 (PARI) a(n)=3^(n+2)-15 \\ Charles R Greathouse IV, Nov 14 2016 CROSSREFS Cf. A277105. Sequence in context: A284641 A226235 A045853 * A014787 A007249 A112142 Adjacent sequences:  A277101 A277102 A277103 * A277105 A277106 A277107 KEYWORD nonn,easy AUTHOR Emeric Deutsch, Nov 05 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 20 07:17 EDT 2018. Contains 316378 sequences. (Running on oeis4.)