login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277106
a(n) = 8*3^n - 12.
1
12, 60, 204, 636, 1932, 5820, 17484, 52476, 157452, 472380, 1417164, 4251516, 12754572, 38263740, 114791244, 344373756, 1033121292, 3099363900, 9298091724, 27894275196, 83682825612, 251048476860, 753145430604, 2259436291836, 6778308875532
OFFSET
1,1
COMMENTS
a(n) is the first Zagreb index of the Sierpiński [Sierpinski] Sieve graph S[n].
The first Zagreb index of a simple connected graph is the sum of the squared degrees of its vertices. Alternately, it is the sum of the degree sums d(i)+d(j) over all edges ij of the graph.
The M-polynomial of the Sierpinski Sieve graph S[n] is M(S[n],x,y) = 6*x^2*y^4 + (3^n - 6)*x^4*y^4.
LINKS
E. Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102.
I. Gutman and K. C. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50, 2004, 83-92.
Eric Weisstein's World of Mathematics, Sierpiński Sieve Graph
FORMULA
G.f.: 12*x*(1 + x)/((1 - x)*(1 - 3*x)).
a(n) = 4*a(n-1) - 3*a(n-2).
a(n)=12*A048473(n-1). - R. J. Mathar, Apr 07 2022
MAPLE
seq(8*3^n-12, n = 1..30);
MATHEMATICA
Array[8*3^# - 12 &, 25] (* Robert G. Wilson v, Nov 05 2016 *)
LinearRecurrence[{4, -3}, {12, 60}, 40] (* Harvey P. Dale, Oct 25 2020 *)
CROSSREFS
Cf. A277107.
Sequence in context: A061624 A213818 A004302 * A000554 A012289 A012583
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Nov 05 2016
STATUS
approved