login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A277106 a(n) = 8*3^n - 12. 1
12, 60, 204, 636, 1932, 5820, 17484, 52476, 157452, 472380, 1417164, 4251516, 12754572, 38263740, 114791244, 344373756, 1033121292, 3099363900, 9298091724, 27894275196, 83682825612, 251048476860, 753145430604, 2259436291836, 6778308875532 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

a(n) is the first Zagreb index of the Sierpiński [Sierpinski] Sieve graph S[n].

The first Zagreb index of a simple connected graph is the sum of the squared degrees of its vertices. Alternately, it is the sum of the degree sums d(i)+d(j) over all edges ij of the graph.

The M-polynomial of the Sierpinski Sieve graph S[n] is  M(S[n],x,y) = 6*x^2*y^4 + (3^n - 6)*x^4*y^4.

LINKS

Table of n, a(n) for n=1..25.

E. Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102.

I. Gutman and K. C. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50, 2004, 83-92.

Eric Weisstein's World of Mathematics, Sierpiński Sieve Graph

Index entries for linear recurrences with constant coefficients, signature (4,-3).

FORMULA

G.f.: 12*x*(1 + x)/((1 - x)*(1 - 3*x)).

a(n) = 4*a(n-1) - 3*a(n-2).

MAPLE

seq(8*3^n-12, n = 1..30);

MATHEMATICA

Array[8*3^# - 12 &, 25] (* Robert G. Wilson v, Nov 05 2016 *)

CROSSREFS

Cf. A277107.

Sequence in context: A061624 A213818 A004302 * A000554 A012289 A012583

Adjacent sequences:  A277103 A277104 A277105 * A277107 A277108 A277109

KEYWORD

nonn,easy

AUTHOR

Emeric Deutsch, Nov 05 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 20 15:52 EST 2020. Contains 332078 sequences. (Running on oeis4.)