login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A277107 a(n) = 16*3^n - 48. 1
0, 96, 384, 1248, 3840, 11616, 34944, 104928, 314880, 944736, 2834304, 8503008, 25509120, 76527456, 229582464, 688747488, 2066242560, 6198727776, 18596183424, 55788550368, 167365651200, 502096953696, 1506290861184, 4518872583648, 13556617751040 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

a(n) is the second Zagreb index of the Sierpiński [Sierpinski] sieve graph S[n] (n>=2).

The second Zagreb index of a simple connected graph g is the sum of the degree products d(i)d(j) over all edges ij of g.

The M-polynomial of the Sierpinski Sieve graph S[n] is  M(S[n], x, y) = 6*x^2*y^4 + (3^n - 6)*x^4*y^4.

LINKS

Table of n, a(n) for n=1..25.

E. Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102.

Eric Weisstein's World of Mathematics, Sierpiński Sieve Graph

Index entries for linear recurrences with constant coefficients, signature (4,-3).

FORMULA

G.f.: 96*x^2/((1 - x)*(1 - 3*x)).

a(n) = 4*a(n-1) - 3*a(n-2).

MAPLE

seq(16*3^n-48, n = 1..30);

MATHEMATICA

Table[16*3^n - 48, {n, 25}] (* or *) Rest@ CoefficientList[Series[96 x^2/((1 - x) (1 - 3 x)), {x, 0, 25}], x] (* Michael De Vlieger, Nov 06 2016 *)

CROSSREFS

Cf. A277106.

Sequence in context: A167983 A248457 A051483 * A292543 A051465 A179825

Adjacent sequences:  A277104 A277105 A277106 * A277108 A277109 A277110

KEYWORD

nonn,easy

AUTHOR

Emeric Deutsch, Nov 05 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 28 09:20 EDT 2021. Contains 346322 sequences. (Running on oeis4.)