The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A277107 a(n) = 16*3^n - 48. 1
 0, 96, 384, 1248, 3840, 11616, 34944, 104928, 314880, 944736, 2834304, 8503008, 25509120, 76527456, 229582464, 688747488, 2066242560, 6198727776, 18596183424, 55788550368, 167365651200, 502096953696, 1506290861184, 4518872583648, 13556617751040 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS a(n) is the second Zagreb index of the Sierpiński [Sierpinski] sieve graph S[n] (n>=2). The second Zagreb index of a simple connected graph g is the sum of the degree products d(i)d(j) over all edges ij of g. The M-polynomial of the Sierpinski Sieve graph S[n] is M(S[n], x, y) = 6*x^2*y^4 + (3^n - 6)*x^4*y^4. LINKS Table of n, a(n) for n=1..25. E. Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102. Eric Weisstein's World of Mathematics, Sierpiński Sieve Graph Index entries for linear recurrences with constant coefficients, signature (4,-3). FORMULA G.f.: 96*x^2/((1 - x)*(1 - 3*x)). a(n) = 4*a(n-1) - 3*a(n-2). a(n) = 96*A003462(n-1). - R. J. Mathar, Apr 07 2022 MAPLE seq(16*3^n-48, n = 1..30); MATHEMATICA Table[16*3^n - 48, {n, 25}] (* or *) Rest@ CoefficientList[Series[96 x^2/((1 - x) (1 - 3 x)), {x, 0, 25}], x] (* Michael De Vlieger, Nov 06 2016 *) CROSSREFS Cf. A277106. Sequence in context: A167983 A248457 A051483 * A292543 A051465 A179825 Adjacent sequences: A277104 A277105 A277106 * A277108 A277109 A277110 KEYWORD nonn,easy AUTHOR Emeric Deutsch, Nov 05 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 23 13:40 EDT 2024. Contains 372763 sequences. (Running on oeis4.)