login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292543
Number of 5-cycles in the n-Sierpinski tetrahedron graph.
3
0, 96, 384, 1536, 6144, 24576, 98304, 393216, 1572864, 6291456, 25165824, 100663296, 402653184, 1610612736, 6442450944, 25769803776, 103079215104, 412316860416, 1649267441664, 6597069766656, 26388279066624, 105553116266496, 422212465065984, 1688849860263936
OFFSET
1,2
LINKS
Eric Weisstein's World of Mathematics, Graph Cycle
Eric Weisstein's World of Mathematics, Sierpinski Tetrahedron Graph
FORMULA
a(n) = 6*4^n = A002023(n) for n > 1.
a(n) = 4*a(n-1) for n > 2.
G.f.: 96*x^/(1 - 4*x).
MATHEMATICA
Table[If[n == 1, 0, 6 4^n], {n, 20}]
Join[{0}, LinearRecurrence[{4}, {96}, 20]]
CoefficientList[Series[96 x/(1 - 4 x), {x, 0, 20}], x]
CROSSREFS
Cf. A002023 (6*4^n).
Cf. A292540 (3-cycles), A292542 (4-cycles), A292545 (6-cycles).
Sequence in context: A248457 A051483 A277107 * A051465 A179825 A304515
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Sep 18 2017
STATUS
approved