login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of 5-cycles in the n-Sierpinski tetrahedron graph.
3

%I #8 Sep 19 2017 10:23:20

%S 0,96,384,1536,6144,24576,98304,393216,1572864,6291456,25165824,

%T 100663296,402653184,1610612736,6442450944,25769803776,103079215104,

%U 412316860416,1649267441664,6597069766656,26388279066624,105553116266496,422212465065984,1688849860263936

%N Number of 5-cycles in the n-Sierpinski tetrahedron graph.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/GraphCycle.html">Graph Cycle</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/SierpinskiTetrahedronGraph.html">Sierpinski Tetrahedron Graph</a>

%H <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (4).

%F a(n) = 6*4^n = A002023(n) for n > 1.

%F a(n) = 4*a(n-1) for n > 2.

%F G.f.: 96*x^/(1 - 4*x).

%t Table[If[n == 1, 0, 6 4^n], {n, 20}]

%t Join[{0}, LinearRecurrence[{4}, {96}, 20]]

%t CoefficientList[Series[96 x/(1 - 4 x), {x, 0, 20}], x]

%Y Cf. A002023 (6*4^n).

%Y Cf. A292540 (3-cycles), A292542 (4-cycles), A292545 (6-cycles).

%K nonn,easy

%O 1,2

%A _Eric W. Weisstein_, Sep 18 2017