login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A292543 Number of 5-cycles in the n-Sierpinski tetrahedron graph. 3

%I #8 Sep 19 2017 10:23:20

%S 0,96,384,1536,6144,24576,98304,393216,1572864,6291456,25165824,

%T 100663296,402653184,1610612736,6442450944,25769803776,103079215104,

%U 412316860416,1649267441664,6597069766656,26388279066624,105553116266496,422212465065984,1688849860263936

%N Number of 5-cycles in the n-Sierpinski tetrahedron graph.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/GraphCycle.html">Graph Cycle</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/SierpinskiTetrahedronGraph.html">Sierpinski Tetrahedron Graph</a>

%H <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (4).

%F a(n) = 6*4^n = A002023(n) for n > 1.

%F a(n) = 4*a(n-1) for n > 2.

%F G.f.: 96*x^/(1 - 4*x).

%t Table[If[n == 1, 0, 6 4^n], {n, 20}]

%t Join[{0}, LinearRecurrence[{4}, {96}, 20]]

%t CoefficientList[Series[96 x/(1 - 4 x), {x, 0, 20}], x]

%Y Cf. A002023 (6*4^n).

%Y Cf. A292540 (3-cycles), A292542 (4-cycles), A292545 (6-cycles).

%K nonn,easy

%O 1,2

%A _Eric W. Weisstein_, Sep 18 2017

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 19 04:19 EDT 2024. Contains 376004 sequences. (Running on oeis4.)