login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A248457
Number of length n+2 0..4 arrays with no three consecutive terms having the sum of any two elements equal to twice the third.
1
96, 380, 1512, 6040, 24160, 96736, 387488, 1552448, 6220480, 24926080, 99883840, 400260160, 1603955712, 6427525312, 25757039296, 103216337152, 413619611968, 1657501354048, 6642119813120, 26617026736320, 106662654436544
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 3*a(n-1) + 5*a(n-2) + 2*a(n-3) - 16*a(n-4) - 28*a(n-5) - 8*a(n-6).
Empirical g.f.: 4*x*(24 + 23*x - 27*x^2 - 147*x^3 - 186*x^4 - 50*x^5) / ((1 - 2*x)*(1 - x - 7*x^2 - 16*x^3 - 16*x^4 - 4*x^5)). - Colin Barker, Nov 08 2018
EXAMPLE
Some solutions for n=6:
..1....0....0....2....3....3....0....0....3....2....3....1....3....4....0....1
..3....4....1....0....4....4....3....1....1....3....2....4....2....1....3....3
..0....1....3....3....4....3....4....1....0....0....2....2....2....4....0....0
..0....4....4....1....3....0....0....0....3....4....3....2....3....4....2....0
..2....1....3....4....1....4....1....4....0....1....2....0....3....0....3....1
..3....0....0....3....1....0....3....4....2....2....0....0....1....0....0....1
..0....1....2....1....2....0....4....2....2....4....0....4....3....4....2....3
..0....0....0....0....4....4....3....2....3....1....3....4....3....3....3....1
CROSSREFS
Column 4 of A248461.
Sequence in context: A292345 A084048 A167983 * A051483 A277107 A292543
KEYWORD
nonn
AUTHOR
R. H. Hardin, Oct 06 2014
STATUS
approved