The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A292545 Number of 6-cycles in the n-Sierpinski tetrahedron graph. 3
 0, 218, 876, 3504, 14016, 56064, 224256, 897024, 3588096, 14352384, 57409536, 229638144, 918552576, 3674210304, 14696841216, 58787364864, 235149459456, 940597837824, 3762391351296, 15049565405184, 60198261620736, 240793046482944, 963172185931776, 3852688743727104 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Table of n, a(n) for n=1..24. Eric Weisstein's World of Mathematics, Graph Cycle Eric Weisstein's World of Mathematics, Sierpinski Tetrahedron Graph Index entries for linear recurrences with constant coefficients, signature (4). FORMULA a(n) = 219*4^(n - 2) for n > 2. a(n) = 4*a(n-1) for n > 2. G.f.: -2*x^2*(109 + 2*x)/(-1 + 4*x). MATHEMATICA Table[Piecewise[{{0, n == 1}, {218, n == 2}}, 219 4^(n - 2)], {n, 20}] Join[{0, 218}, LinearRecurrence[{4}, {876}, 20]] CoefficientList[Series[-2 x (109 + 2 x)/(-1 + 4 x), {x, 0, 20}], x] PROG (PARI) concat(0, Vec(-2*x^2*(109 + 2*x)/(-1 + 4*x) + O(x^50))) \\ Michel Marcus, Sep 19 2017 CROSSREFS Cf. A292540 (3-cycles), A292542 (4-cycles), A292543 (5-cycles). Sequence in context: A253740 A253733 A241102 * A321115 A253732 A232513 Adjacent sequences: A292542 A292543 A292544 * A292546 A292547 A292548 KEYWORD nonn,easy AUTHOR Eric W. Weisstein, Sep 18 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 4 06:02 EST 2023. Contains 367541 sequences. (Running on oeis4.)