login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292548
Number of multisets of nonempty binary words with a total of n letters such that no word has a majority of 0's.
3
1, 1, 4, 8, 25, 53, 148, 328, 858, 1938, 4862, 11066, 27042, 61662, 147774, 336854, 795678, 1810466, 4228330, 9597694, 22211897, 50279985, 115489274, 260686018, 594986149, 1339215285, 3040004744, 6823594396, 15416270130, 34510814918, 77644149076, 173368564396
OFFSET
0,3
LINKS
FORMULA
G.f.: Product_{j>=1} 1/(1-x^j)^A027306(j).
Euler transform of A027306.
EXAMPLE
a(0) = 1: {}.
a(1) = 1: {1}.
a(2) = 4: {01}, {10}, {11}, {1,1}.
a(3) = 8: {011}, {101}, {110}, {111}, {1,01}, {1,10}, {1,11}, {1,1,1}.
MAPLE
g:= n-> 2^(n-1)+`if`(n::odd, 0, binomial(n, n/2)/2):
a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
g(d), d=numtheory[divisors](j))*a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..35);
MATHEMATICA
g[n_] := 2^(n-1) + If[OddQ[n], 0, Binomial[n, n/2]/2];
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*
g[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n];
Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Apr 30 2022, after Alois P. Heinz *)
CROSSREFS
Row sums of A292506.
Column k=2 of A292712.
Cf. A027306.
Sequence in context: A371190 A185615 A068367 * A000964 A297458 A328038
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 18 2017
STATUS
approved