login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371190
The smaller of a pair of successive powerful numbers without a nonsquarefree number between them.
1
1, 4, 8, 25, 32, 288, 675, 968, 1152, 1369, 2700, 9800, 12167, 39200, 48668, 70225, 235224, 332928, 465124, 1331712, 1825200, 5724500, 7300800, 11309768, 78960996, 189750625, 263672644, 384199200, 592192224, 912670088, 1536796800, 2368768896, 4931691075, 5425069447, 8957108164
OFFSET
1,2
EXAMPLE
1 is a term since 1 and 4 are successive powerful numbers and the numbers between them, 2 and 3, are both squarefree.
MATHEMATICA
seq[max_] := Module[{pows = Union[Flatten[Table[i^2*j^3, {j, 1, Surd[max, 3]}, {i, 1, Sqrt[max/j^3]}]]], s = {}}, Do[If[AllTrue[Range[pows[[k]] + 1, pows[[k + 1]] - 1], SquareFreeQ], AppendTo[s, pows[[k]]]], {k, 1, Length[pows] - 1}]; s]; seq[10^10]
PROG
(PARI) lista(mx) = {my(s = List(), is); for(j = 1, sqrtnint(mx, 3), for(i = 1, sqrtint(mx\j^3), listput(s, i^2 * j^3))); s = Set(s); for(i = 1, #s - 1, is = 1; for(k = s[i]+1, s[i+1]-1, if(!issquarefree(k), is = 0; break)); if(is, print1(s[i], ", "))); }
(Python)
from math import isqrt
from sympy import mobius, integer_nthroot
def A371190_gen(): # generator of terms
def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x):
c, l, j = x-squarefreepi(integer_nthroot(x, 3)[0]), 0, isqrt(x)
while j>1:
k2 = integer_nthroot(x//j**2, 3)[0]+1
w = squarefreepi(k2-1)
c -= j*(w-l)
l, j = w, isqrt(x//k2**3)
return c+l
m, w = 1, 1
for n in count(2):
k = bisection(lambda x:f(x)+n, m, m)
if (a:=squarefreepi(k))-w==k-1-m:
yield m
m, w = k, a # Chai Wah Wu, Sep 15 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, Mar 14 2024
STATUS
approved