OFFSET
1,1
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..373 (terms below 10^15; terms 1..103 from Amiram Eldar, terms 104..235 from Chai Wah Wu)
MATHEMATICA
Select[Partition[Join[{1}, Select[Range[10^6], Min@FactorInteger[#][[All, 2]]> 1&]], 2, 1], PrimePi[#[[1]]]==PrimePi[#[[2]]]&][[All, 1]] (* Harvey P. Dale, Mar 28 2018 *)
PROG
(PARI)
ispowerful(n)={local(h); if(n==1, h=1, h=(vecmin(factor(n)[, 2])>1)); return(h)}
nextpowerful(n)={local(k); k=n+1; while(!ispowerful(k), k+=1); return(k)}
{for(i=1, 10^6, if(ispowerful(i), if(nextprime(i)>=nextpowerful(i), print1(i, ", "))))}
(Python)
from itertools import count, islice
from math import isqrt
from sympy import mobius, integer_nthroot, nextprime
def A240591_gen(): # generator of terms
def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x):
c, l, j = x-squarefreepi(integer_nthroot(x, 3)[0]), 0, isqrt(x)
while j>1:
k2 = integer_nthroot(x//j**2, 3)[0]+1
w = squarefreepi(k2-1)
c -= j*(w-l)
l, j = w, isqrt(x//k2**3)
return c+l
m = 1
for n in count(2):
k = bisection(lambda x:f(x)+n, m, m)
if nextprime(m) > k:
yield m
m = k
CROSSREFS
KEYWORD
nonn
AUTHOR
Antonio Roldán, Apr 08 2014
STATUS
approved