login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000964 The convergent sequence C_n for the ternary continued fraction (3,1;2,2) of period 2.
(Formerly M3343 N1345)
4
0, 0, 1, 1, 4, 8, 25, 53, 164, 348, 1077, 2285, 7072, 15004, 46437, 98521, 304920, 646920, 2002201, 4247881, 13147084, 27892928, 86327905, 183153773, 566856284, 1202645508, 3722157357, 7896950165, 24440860552, 51853868404, 160486408077 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

REFERENCES

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

D. N. Lehmer, On ternary continued fractions, Tohoku Math. J., 37 (1933), 436-445.

D. N. Lehmer, On ternary continued fractions (Annotated scanned copy)

Index entries for linear recurrences with constant coefficients, signature (0, 7, 0, -3, 0, 1).

FORMULA

G.f.: (x^5 - 3x^4 + x^3 + x^2)/(-x^6 + 3x^4 - 7x^2 + 1).

a(n) = 7*a(n-2) - 3*a(n-4) + a(n-6); a(0)=0, a(1)=0, a(2)=1, a(3)=1, a(4)=4, a(5)=8. - Harvey P. Dale, Jun 29 2011

MAPLE

G:=(x^5-3*x^4+x^3+x^2)/(-x^6+3*x^4-7*x^2+1): Gser:=series(G, x=0, 35): seq(coeff(Gser, x, n), n=0..32); # Emeric Deutsch, Apr 22 2006

MATHEMATICA

LinearRecurrence[{0, 7, 0, -3, 0, 1}, {0, 0, 1, 1, 4, 8}, 31] (* Harvey P. Dale, Jun 29 2011 *)

CoefficientList[Series[(x^5-3x^4+x^3+x^2)/(-x^6+3x^4-7x^2+1), {x, 0, 40}], x] (* Vincenzo Librandi, Apr 11 2012 *)

CROSSREFS

Cf. A000962, A000964.

Sequence in context: A185615 A068367 A292548 * A297458 A107840 A046736

Adjacent sequences:  A000961 A000962 A000963 * A000965 A000966 A000967

KEYWORD

nonn,easy,changed

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Emeric Deutsch, Apr 22 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 15 16:53 EST 2019. Contains 320136 sequences. (Running on oeis4.)