login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A000964
The convergent sequence C_n for the ternary continued fraction (3,1;2,2) of period 2.
(Formerly M3343 N1345)
4
0, 0, 1, 1, 4, 8, 25, 53, 164, 348, 1077, 2285, 7072, 15004, 46437, 98521, 304920, 646920, 2002201, 4247881, 13147084, 27892928, 86327905, 183153773, 566856284, 1202645508, 3722157357, 7896950165, 24440860552, 51853868404, 160486408077
OFFSET
0,5
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
D. N. Lehmer, On ternary continued fractions, Tohoku Math. J., 37 (1933), 436-445.
D. N. Lehmer, On ternary continued fractions (Annotated scanned copy)
FORMULA
G.f.: (x^5 - 3x^4 + x^3 + x^2)/(-x^6 + 3x^4 - 7x^2 + 1).
a(n) = 7*a(n-2) - 3*a(n-4) + a(n-6); a(0)=0, a(1)=0, a(2)=1, a(3)=1, a(4)=4, a(5)=8. - Harvey P. Dale, Jun 29 2011
MAPLE
G:=(x^5-3*x^4+x^3+x^2)/(-x^6+3*x^4-7*x^2+1): Gser:=series(G, x=0, 35): seq(coeff(Gser, x, n), n=0..32); # Emeric Deutsch, Apr 22 2006
MATHEMATICA
LinearRecurrence[{0, 7, 0, -3, 0, 1}, {0, 0, 1, 1, 4, 8}, 31] (* Harvey P. Dale, Jun 29 2011 *)
CoefficientList[Series[(x^5-3x^4+x^3+x^2)/(-x^6+3x^4-7x^2+1), {x, 0, 40}], x] (* Vincenzo Librandi, Apr 11 2012 *)
CROSSREFS
Sequence in context: A185615 A068367 A292548 * A297458 A328038 A107840
KEYWORD
nonn,easy
EXTENSIONS
More terms from Emeric Deutsch, Apr 22 2006
STATUS
approved