login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A107840
a(n)= 3*a(n-1) -3*a(n-3) +a(n-4), n>6.
0
1, 1, 1, 0, 4, 8, 25, 63, 169, 440, 1156, 3024, 7921, 20735, 54289, 142128, 372100, 974168, 2550409, 6677055, 17480761, 45765224, 119814916, 313679520, 821223649, 2149991423, 5628750625, 14736260448, 38580030724, 101003831720
OFFSET
1,5
FORMULA
lim a(n)/a(n-1) = 1+(Sqrt[5]+1)/2.
G.f.: x*(2*x^2-6*x^4+2*x^5+2*x-1)/( (x-1)* (1+x)*(x^2-3*x+1)). [Sep 28 2009]
a(n) = -1/2-9*(-1)^n/10 +7*A001906(n+1)/5 -18*A001906(n)/5, n>2 [Sep 28 2009]
MATHEMATICA
(* method one*) F[1] = 1; F[2] = 1; F[3] = 1; F[4] = 0; F[n__] := F[n] = -3*F[n - 1] + 3*F[n - 3] + F[n - 4] a = Table[Abs[F[n]], {n, 1, 50}] an = Table[N[a[[n]]/a[[n - 1]]], {n, 6, 25}] (* method two*) M = {{0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}, {1, 3, 0, -3}} v[1] = {1, 1, 1, 0} v[n_] := v[n] = M.v[n - 1] a0 = Table[Abs[v[n][[1]]], {n, 1, 50}] an = Table[N[a0[[n]]/a0[[n - 1]]], {n, 6, 25}] Det[M - x*IdentityMatrix[4]]
CROSSREFS
Sequence in context: A000964 A297458 A328038 * A046736 A174171 A262042
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Jun 12 2005
EXTENSIONS
Definition replaced by recurrence by the Associate Editors of the OEIS, Sep 28 2009
STATUS
approved