login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The convergent sequence C_n for the ternary continued fraction (3,1;2,2) of period 2.
(Formerly M3343 N1345)
4

%I M3343 N1345 #32 Feb 06 2019 02:00:01

%S 0,0,1,1,4,8,25,53,164,348,1077,2285,7072,15004,46437,98521,304920,

%T 646920,2002201,4247881,13147084,27892928,86327905,183153773,

%U 566856284,1202645508,3722157357,7896950165,24440860552,51853868404,160486408077

%N The convergent sequence C_n for the ternary continued fraction (3,1;2,2) of period 2.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Vincenzo Librandi, <a href="/A000964/b000964.txt">Table of n, a(n) for n = 0..1000</a>

%H D. N. Lehmer, <a href="https://www.jstage.jst.go.jp/article/tmj1911/37/0/37_0_436/_article/-char/en">On ternary continued fractions</a>, Tohoku Math. J., 37 (1933), 436-445.

%H D. N. Lehmer, <a href="/A000962/a000962.pdf">On ternary continued fractions</a> (Annotated scanned copy)

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0, 7, 0, -3, 0, 1).

%F G.f.: (x^5 - 3x^4 + x^3 + x^2)/(-x^6 + 3x^4 - 7x^2 + 1).

%F a(n) = 7*a(n-2) - 3*a(n-4) + a(n-6); a(0)=0, a(1)=0, a(2)=1, a(3)=1, a(4)=4, a(5)=8. - _Harvey P. Dale_, Jun 29 2011

%p G:=(x^5-3*x^4+x^3+x^2)/(-x^6+3*x^4-7*x^2+1): Gser:=series(G,x=0,35): seq(coeff(Gser,x,n),n=0..32); # _Emeric Deutsch_, Apr 22 2006

%t LinearRecurrence[{0,7,0,-3,0,1},{0,0,1,1,4,8},31] (* _Harvey P. Dale_, Jun 29 2011 *)

%t CoefficientList[Series[(x^5-3x^4+x^3+x^2)/(-x^6+3x^4-7x^2+1),{x,0,40}],x] (* _Vincenzo Librandi_, Apr 11 2012 *)

%Y Cf. A000962, A000964.

%K nonn,easy

%O 0,5

%A _N. J. A. Sloane_

%E More terms from _Emeric Deutsch_, Apr 22 2006