The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A045853 Number of nonnegative solutions of x1^2 + x2^2 + ... + x12^2 = n. 1
1, 12, 66, 220, 507, 924, 1584, 2772, 4521, 6436, 8712, 12552, 18041, 23364, 28776, 37896, 50997, 62832, 72996, 89892, 115776, 139348, 156816, 185064, 231759, 274044, 300828, 343564, 418638, 487080, 528528, 592284, 707421, 814836, 874170, 959508, 1128338 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..2000 from T. D. Noe)
FORMULA
Coefficient of q^n in (1 + q + q^4 + q^9 + q^16 + q^25 + q^36 + q^49 + q^64 + ...)^12.
G.f.: ((1 + theta_3(x)) / 2)^12. - Ilya Gutkovskiy, Feb 10 2021
MAPLE
b:= proc(n, k) option remember; `if`(n=0, 1, `if`(n<0 or k<1, 0,
b(n, k-1)+add(b(n-j^2, k-1), j=1..isqrt(n))))
end:
a:= b(n, 12):
seq(a(n), n=0..40); # Alois P. Heinz, Feb 10 2021
MATHEMATICA
CoefficientList[((1 + EllipticTheta[3, 0, q])/2)^12 + O[q]^40, q] (* Jean-François Alcover, Mar 01 2021 *)
PROG
(Ruby)
def mul(f_ary, b_ary, m)
s1, s2 = f_ary.size, b_ary.size
ary = Array.new(s1 + s2 - 1, 0)
(0..s1 - 1).each{|i|
(0..s2 - 1).each{|j|
ary[i + j] += f_ary[i] * b_ary[j]
}
}
ary[0..m]
end
def power(ary, n, m)
if n == 0
a = Array.new(m + 1, 0)
a[0] = 1
return a
end
k = power(ary, n >> 1, m)
k = mul(k, k, m)
return k if n & 1 == 0
return mul(k, ary, m)
end
def A(k, n)
ary = Array.new(n + 1, 0)
(0..Math.sqrt(n).to_i).each{|i| ary[i * i] = 1}
power(ary, k, n)
end
p A(12, 100) # Seiichi Manyama, May 28 2017
CROSSREFS
Sequence in context: A080559 A284641 A226235 * A277104 A014787 A007249
KEYWORD
nonn
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 18 03:43 EDT 2024. Contains 372618 sequences. (Running on oeis4.)