login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A045853
Number of nonnegative solutions of x1^2 + x2^2 + ... + x12^2 = n.
1
1, 12, 66, 220, 507, 924, 1584, 2772, 4521, 6436, 8712, 12552, 18041, 23364, 28776, 37896, 50997, 62832, 72996, 89892, 115776, 139348, 156816, 185064, 231759, 274044, 300828, 343564, 418638, 487080, 528528, 592284, 707421, 814836, 874170, 959508, 1128338
OFFSET
0,2
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..2000 from T. D. Noe)
FORMULA
Coefficient of q^n in (1 + q + q^4 + q^9 + q^16 + q^25 + q^36 + q^49 + q^64 + ...)^12.
G.f.: ((1 + theta_3(x)) / 2)^12. - Ilya Gutkovskiy, Feb 10 2021
MAPLE
b:= proc(n, k) option remember; `if`(n=0, 1, `if`(n<0 or k<1, 0,
b(n, k-1)+add(b(n-j^2, k-1), j=1..isqrt(n))))
end:
a:= b(n, 12):
seq(a(n), n=0..40); # Alois P. Heinz, Feb 10 2021
MATHEMATICA
CoefficientList[((1 + EllipticTheta[3, 0, q])/2)^12 + O[q]^40, q] (* Jean-François Alcover, Mar 01 2021 *)
PROG
(Ruby)
def mul(f_ary, b_ary, m)
s1, s2 = f_ary.size, b_ary.size
ary = Array.new(s1 + s2 - 1, 0)
(0..s1 - 1).each{|i|
(0..s2 - 1).each{|j|
ary[i + j] += f_ary[i] * b_ary[j]
}
}
ary[0..m]
end
def power(ary, n, m)
if n == 0
a = Array.new(m + 1, 0)
a[0] = 1
return a
end
k = power(ary, n >> 1, m)
k = mul(k, k, m)
return k if n & 1 == 0
return mul(k, ary, m)
end
def A(k, n)
ary = Array.new(n + 1, 0)
(0..Math.sqrt(n).to_i).each{|i| ary[i * i] = 1}
power(ary, k, n)
end
p A(12, 100) # Seiichi Manyama, May 28 2017
CROSSREFS
Sequence in context: A080559 A284641 A226235 * A277104 A014787 A007249
KEYWORD
nonn
STATUS
approved