OFFSET
1,2
COMMENTS
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..10000
Richard Moy, Congruences among power series coefficients of modular forms, arXiv:1309.4320 [math.NT], 2013.
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Wenzhe Yang, Apéry's irrationality proof, mirror symmetry and Beukers' modular forms, arXiv:1911.02608 [math.NT], 2019.
FORMULA
Expansion of q * (f(-q, -q^5) / f(-q^6))^12 in powers of q where f() is a Ramanujan theta function.
Expansion of ((c(q^2) * b(q)) / (c(q) * b(q^2)))^3 in powers of q where b() and c() are cubic AGM theta functions.
Expansion of (eta(q) * eta(q^6) / (eta(q^2) * eta(q^3)))^12 in powers of q.
Euler transform of period 6 sequence [ -12, 0, 0, 0, -12, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w)= (v - u^2) * (v - w^2) - u*w * (24*(1 + v^2) + 152*v).
G.f. is a period 1 Fourier series which satisfies f(-1 / (6 t)) = f(t) where q = exp(2 Pi i t).
G.f.: x * (Product_{k>0} 1 - x^k + x^(2*k))^12 where 1 - x + x^2 is the 6th cyclotomic polynomial.
a(n) ~ (-1)^(n+1) * exp(2*Pi*sqrt(n/3)) / (2*3^(1/4)*n^(3/4)). - Vaclav Kotesovec, Mar 30 2017
Empirical: Sum_{n>=1} a(n)/exp(2*Pi*n) = 11 + 5*sqrt(3) - sqrt(189 + 114*sqrt(3)). - Simon Plouffe, Mar 02 2021
EXAMPLE
G.f. = q - 12*q^2 + 66*q^3 - 220*q^4 + 495*q^5 - 804*q^6 + 1068*q^7 - 1596*q^8 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ q (QPochhammer[ q] QPochhammer[ q^6] / (QPochhammer[ q^2] QPochhammer[ q^3]))^12, {q, 0, n}]
nmax = 50; CoefficientList[Series[Product[((1 + x^(3*k))/(1 + x^k))^12, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 30 2017 *)
PROG
(PARI) {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^6 + A) / (eta(x^2 + A) * eta(x^3 + A)))^12, n))}
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Sep 18 2013
STATUS
approved