login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226235
Expansion of q * (chi(-q) / chi(-q^3))^12 in powers of q where chi() is a Ramanujan theta function.
7
1, -12, 66, -220, 495, -804, 1068, -1596, 3279, -6952, 12276, -17844, 23653, -34080, 57168, -98428, 154332, -215724, 285388, -395784, 600459, -931888, 1365696, -1853076, 2426189, -3277896, 4689534, -6815008, 9538632, -12664440, 16403188, -21690876, 29812932
OFFSET
1,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Richard Moy, Congruences among power series coefficients of modular forms, arXiv:1309.4320 [math.NT], 2013.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Wenzhe Yang, Apéry's irrationality proof, mirror symmetry and Beukers' modular forms, arXiv:1911.02608 [math.NT], 2019.
FORMULA
Expansion of q * (f(-q, -q^5) / f(-q^6))^12 in powers of q where f() is a Ramanujan theta function.
Expansion of ((c(q^2) * b(q)) / (c(q) * b(q^2)))^3 in powers of q where b() and c() are cubic AGM theta functions.
Expansion of (eta(q) * eta(q^6) / (eta(q^2) * eta(q^3)))^12 in powers of q.
Euler transform of period 6 sequence [ -12, 0, 0, 0, -12, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w)= (v - u^2) * (v - w^2) - u*w * (24*(1 + v^2) + 152*v).
G.f. A(x) satisfies f(x) = g(A(x)) where f, g are the g.f. for A006353 and A005259.
G.f. is a period 1 Fourier series which satisfies f(-1 / (6 t)) = f(t) where q = exp(2 Pi i t).
G.f.: x * (Product_{k>0} 1 - x^k + x^(2*k))^12 where 1 - x + x^2 is the 6th cyclotomic polynomial.
Convolution inverse of A121665. Convolution 12th power of A109389.
a(n) ~ (-1)^(n+1) * exp(2*Pi*sqrt(n/3)) / (2*3^(1/4)*n^(3/4)). - Vaclav Kotesovec, Mar 30 2017
Empirical: Sum_{n>=1} a(n)/exp(2*Pi*n) = 11 + 5*sqrt(3) - sqrt(189 + 114*sqrt(3)). - Simon Plouffe, Mar 02 2021
EXAMPLE
G.f. = q - 12*q^2 + 66*q^3 - 220*q^4 + 495*q^5 - 804*q^6 + 1068*q^7 - 1596*q^8 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ q (QPochhammer[ q] QPochhammer[ q^6] / (QPochhammer[ q^2] QPochhammer[ q^3]))^12, {q, 0, n}]
nmax = 50; CoefficientList[Series[Product[((1 + x^(3*k))/(1 + x^k))^12, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 30 2017 *)
PROG
(PARI) {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^6 + A) / (eta(x^2 + A) * eta(x^3 + A)))^12, n))}
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Sep 18 2013
STATUS
approved