login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 9*3^n - 15.
1

%I #33 Nov 19 2024 06:34:32

%S 12,66,228,714,2172,6546,19668,59034,177132,531426,1594308,4782954,

%T 14348892,43046706,129140148,387420474,1162261452,3486784386,

%U 10460353188,31381059594,94143178812,282429536466,847288609428,2541865828314,7625597484972,22876792454946

%N a(n) = 9*3^n - 15.

%C a(n) is the first Zagreb index of the Hanoi graph H[n].

%C The first Zagreb index of a simple connected graph is the sum of the squared degrees of its vertices. Alternately, it is the sum of the degree sums d(i)+d(j) over all edges ij of the graph.

%C The M-polynomial of the Hanoi graph H[n] is M(H[n],x,y) = 6*x^2*y^3 + (3/2)*(3^n - 5)*x^3*y^3.

%H E. Deutsch and Sandi Klavzar, <a href="http://dx.doi.org/10.22052/ijmc.2015.10106">M-polynomial and degree-based topological indices</a>, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102.

%H I. Gutman and K. C. Das, <a href="http://match.pmf.kg.ac.rs/electronic_versions/Match50/match50_83-92.pdf">The first Zagreb index 30 years after</a>, MATCH Commun. Math. Comput. Chem. 50, 2004, 83-92.

%H Eric. W. Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/HanoiGraph.html">Hanoi Graph</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (4,-3).

%F O.g.f.: 6*x*(2 + 3*x)/((1 - x)*(1 - 3*x)).

%F E.g.f.: 3*(1 - exp(x))*(2 - 3*exp(x) - 3*exp(2*x)). - _Bruno Berselli_, Nov 14 2016

%F a(n) = 3*A168613(n+1). - _R. J. Mathar_, Apr 07 2022

%p seq(9*3^n-15, n = 1..30);

%t Table[9 3^n - 15, {n, 1, 30}] (* _Bruno Berselli_, Nov 14 2016 *)

%o (Magma) [9*3^n-15: n in [1..30]]; // _Bruno Berselli_, Nov 14 2016

%o (PARI) a(n)=3^(n+2)-15 \\ _Charles R Greathouse IV_, Nov 14 2016

%Y Cf. A277105.

%K nonn,easy

%O 1,1

%A _Emeric Deutsch_, Nov 05 2016