login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A218074
Expansion of Sum_{n>=1} ((n-1) * q^(n*(n+1)/2) / Product_{k=1..n} (1 - q^k)).
4
0, 0, 0, 1, 1, 2, 4, 5, 7, 10, 15, 18, 25, 31, 41, 53, 66, 81, 103, 125, 154, 190, 229, 276, 333, 399, 475, 568, 673, 794, 938, 1102, 1289, 1512, 1760, 2050, 2384, 2760, 3190, 3687, 4246, 4882, 5609, 6427, 7354, 8412, 9592, 10927, 12439, 14130, 16033, 18177, 20573, 23256, 26271
OFFSET
0,6
COMMENTS
Number of up-steps (== number of parts - 1) in all partitions of n into distinct parts (represented as increasing lists), see example. - Joerg Arndt, Sep 03 2014
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..2000 (first 201 terms from Vincenzo Librandi)
FORMULA
a(n) = A015723(n) - A000009(n) for n>0. - Alois P. Heinz, Sep 03 2014
EXAMPLE
a(8) = 7 because in the 6 partitions of 8 into distinct parts
1: [ 1 2 5 ]
2: [ 1 3 4 ]
3: [ 1 7 ]
4: [ 2 6 ]
5: [ 3 5 ]
6: [ 8 ]
there are 2+2+1+1+1+0 = 7 up-steps. - Joerg Arndt, Sep 03 2014
MAPLE
b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, 0,
b(n, i-1)+`if`(i>n, 0, (p->p+[0, p[1]])(b(n-i, i-1)))))
end:
a:= n-> `if`(n=0, 0, (p-> p[2]-p[1])(b(n$2))):
seq(a(n), n=0..80); # Alois P. Heinz, Sep 03 2014
MATHEMATICA
max=80; s=Sum[(n-1)*q^(n*(n+1)/2)/QPochhammer[q, q, n], {n, Sqrt[max+1]}]+ O[q]^max; CoefficientList[s, q] (* Jean-François Alcover, Jan 17 2016 *)
PROG
(PARI)
N=66; q='q+O('q^N);
gf=sum(n=1, N, (n-1)*q^(n*(n+1)/2) / prod(k=1, n, 1-q^k ) );
v=Vec(gf+'a0); v[1]-='a0; v /* include initial zeros */
CROSSREFS
Cf. A015723, Sum_{n>=0} (n * q^(n*(n+1)/2) / Product_{k=1..n} (1 - q^k)).
Cf. A032020, Sum_{n>=0} (n! * q^(n*(n+1)/2) / Product_{k=1..n} (1 - q^k)).
Cf. A032153, Sum_{n>=1} ((n-1)! * q^(n*(n+1)/2) / Product_{k=1..n} (1 - q^k)).
Cf. A072576, Sum_{n>=0} ((n+1)! * q^(n*(n+1)/2) / Product_{k=1..n} (1 - q^k)).
Cf. A058884 (up-steps in all partitions).
Sequence in context: A018756 A018301 A351390 * A241735 A092295 A277102
KEYWORD
nonn
AUTHOR
Joerg Arndt, Oct 20 2012
STATUS
approved