This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A032153 Number of ways to partition n elements into pie slices of different sizes. 6
 1, 1, 1, 2, 2, 3, 5, 6, 8, 11, 19, 22, 32, 41, 57, 92, 114, 155, 209, 280, 364, 587, 707, 984, 1280, 1737, 2213, 2990, 4390, 5491, 7361, 9650, 12708, 16451, 21567, 27506, 40100, 49201, 65701, 84128, 111278, 140595, 184661, 232356, 300680 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS Robert Israel, Table of n, a(n) for n = 0..2000 C. G. Bower, Transforms (2) FORMULA "CGK" (necklace, element, unlabeled) transform of 1, 1, 1, 1, ... G.f.: Sum_{k >= 1} (k-1)! * x^((k^2+k)/2) / (Product_{j=1..k} 1-x^j). - Vladeta Jovovic, Sep 21 2004 MAPLE N:= 100: # to get a(0)..a(N) K:= floor(isqrt(1+8*N)/2): S:= series(1+add((k-1)!*x^((k^2+k)/2)/mul(1-x^j, j=1..k), k=1..K), x, N+1): seq(coeff(S, x, j), j=0..N); # Robert Israel, Jul 15 2016 MATHEMATICA max=50; s=Sum[(x^(k(k+1)/2-1)*(k-1)!)/QPochhammer[x, x, k], {k, 1, max}] + O[x]^max; CoefficientList[s, x] (* Jean-François Alcover, Jan 19 2016 *) PROG (PARI) N=66;  q='q+O('q^N); gf=sum(n=1, N, (n-1)!*q^(n*(n+1)/2) / prod(k=1, n, 1-q^k ) ); Vec(gf) /* Joerg Arndt, Oct 20 2012 */ (PARI) seq(n)=[subst(serlaplace(p/y), y, 1) | p <- Vec(y-1+prod(k=1, n, 1 + x^k*y + O(x*x^n)))] \\ Andrew Howroyd, Sep 13 2018 CROSSREFS Cf. A032020. Sequence in context: A084783 A265853 A129838 * A116465 A117356 A017819 Adjacent sequences:  A032150 A032151 A032152 * A032154 A032155 A032156 KEYWORD nonn,nice AUTHOR EXTENSIONS a(0)=1 prepended by Andrew Howroyd, Sep 13 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 15 20:47 EST 2019. Contains 319184 sequences. (Running on oeis4.)