login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of Sum_{n>=1} ((n-1) * q^(n*(n+1)/2) / Product_{k=1..n} (1 - q^k)).
4

%I #33 Oct 27 2023 21:10:15

%S 0,0,0,1,1,2,4,5,7,10,15,18,25,31,41,53,66,81,103,125,154,190,229,276,

%T 333,399,475,568,673,794,938,1102,1289,1512,1760,2050,2384,2760,3190,

%U 3687,4246,4882,5609,6427,7354,8412,9592,10927,12439,14130,16033,18177,20573,23256,26271

%N Expansion of Sum_{n>=1} ((n-1) * q^(n*(n+1)/2) / Product_{k=1..n} (1 - q^k)).

%C Number of up-steps (== number of parts - 1) in all partitions of n into distinct parts (represented as increasing lists), see example. - _Joerg Arndt_, Sep 03 2014

%H Alois P. Heinz, <a href="/A218074/b218074.txt">Table of n, a(n) for n = 0..2000</a> (first 201 terms from Vincenzo Librandi)

%F a(n) = A015723(n) - A000009(n) for n>0. - _Alois P. Heinz_, Sep 03 2014

%e a(8) = 7 because in the 6 partitions of 8 into distinct parts

%e 1: [ 1 2 5 ]

%e 2: [ 1 3 4 ]

%e 3: [ 1 7 ]

%e 4: [ 2 6 ]

%e 5: [ 3 5 ]

%e 6: [ 8 ]

%e there are 2+2+1+1+1+0 = 7 up-steps. - _Joerg Arndt_, Sep 03 2014

%p b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, 0,

%p b(n, i-1)+`if`(i>n, 0, (p->p+[0, p[1]])(b(n-i, i-1)))))

%p end:

%p a:= n-> `if`(n=0, 0, (p-> p[2]-p[1])(b(n$2))):

%p seq(a(n), n=0..80); # _Alois P. Heinz_, Sep 03 2014

%t max=80; s=Sum[(n-1)*q^(n*(n+1)/2)/QPochhammer[q, q, n], {n, Sqrt[max+1]}]+ O[q]^max; CoefficientList[s, q] (* _Jean-François Alcover_, Jan 17 2016 *)

%o (PARI)

%o N=66; q='q+O('q^N);

%o gf=sum(n=1,N, (n-1)*q^(n*(n+1)/2) / prod(k=1,n, 1-q^k ) );

%o v=Vec(gf+'a0); v[1]-='a0; v /* include initial zeros */

%Y Cf. A015723, Sum_{n>=0} (n * q^(n*(n+1)/2) / Product_{k=1..n} (1 - q^k)).

%Y Cf. A032020, Sum_{n>=0} (n! * q^(n*(n+1)/2) / Product_{k=1..n} (1 - q^k)).

%Y Cf. A032153, Sum_{n>=1} ((n-1)! * q^(n*(n+1)/2) / Product_{k=1..n} (1 - q^k)).

%Y Cf. A072576, Sum_{n>=0} ((n+1)! * q^(n*(n+1)/2) / Product_{k=1..n} (1 - q^k)).

%Y Cf. A058884 (up-steps in all partitions).

%K nonn

%O 0,6

%A _Joerg Arndt_, Oct 20 2012