login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A218073
Number of profiles in domino tiling of a 2*n checkboard.
1
0, 1, 2, 9, 12, 50, 60, 245, 280, 1134, 1260, 5082, 5544, 22308, 24024, 96525, 102960, 413270, 437580, 1755182, 1847560, 7407036, 7759752, 31097794, 32449872, 130007500, 135207800, 541574100, 561632400, 2249204040, 2326762800, 9316746045, 9617286240, 38504502630
OFFSET
0,3
LINKS
T. C. Wu, Counting the Profiles in Domino Tiling, The Fibonacci Quarterly, Volume 21, Number 4, November 1983, pp. 302-304.
FORMULA
If n is even, a(n) = binomial(n, n/2)*n/2.
If n is odd, a(n) = binomial(n + 1, (n + 1)/2)*n/2.
MAPLE
a:= proc(n) option remember;
`if`(n<3, n, (n*(5-7*n)*a(n-1) +4*(n-2)*(7*n+16)*a(n-3)
+(24-12*n+172*n^2)*a(n-2))/ ((n+1)*(43*n-89)))
end:
seq(a(n), n=0..40); # Alois P. Heinz, Oct 20 2012
MATHEMATICA
a[n_] := n/2*Binomial[n + Mod[n, 2], (n + Mod[n, 2])/2]; Table[a[n], {n, 0, 33}] (* Jean-François Alcover, Feb 22 2013, after Joerg Arndt *)
PROG
(Maxima) a[0]:0$a[1]:1$a[2]:2$
a[n]:=(n*(5-7*n)*a[n-1] +4*(n-2)*(7*n+16)*a[n-3]+(24-12*n+172*n^2)*a[n-2])/ ((n+1)*(43*n-89))$
makelist(a[n] , n, 0, 40); /* Martin Ettl, Oct 21 2012 */
(PARI) a(n) = n/2 * binomial(n+(n%2), (n+n%2)/2); /* Joerg Arndt, Oct 21 2012 */
CROSSREFS
Cf. A005430 (bisection).
Sequence in context: A102237 A324571 A076505 * A129345 A216350 A125019
KEYWORD
nonn,changed
AUTHOR
Michel Marcus, Oct 20 2012
STATUS
approved