login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of profiles in domino tiling of a 2*n checkboard.
1

%I #27 Jan 05 2025 19:51:39

%S 0,1,2,9,12,50,60,245,280,1134,1260,5082,5544,22308,24024,96525,

%T 102960,413270,437580,1755182,1847560,7407036,7759752,31097794,

%U 32449872,130007500,135207800,541574100,561632400,2249204040,2326762800,9316746045,9617286240,38504502630

%N Number of profiles in domino tiling of a 2*n checkboard.

%H Alois P. Heinz, <a href="/A218073/b218073.txt">Table of n, a(n) for n = 0..1000</a>

%H T. C. Wu, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/21-4/wu.pdf">Counting the Profiles in Domino Tiling</a>, The Fibonacci Quarterly, Volume 21, Number 4, November 1983, pp. 302-304.

%F If n is even, a(n) = binomial(n, n/2)*n/2.

%F If n is odd, a(n) = binomial(n + 1, (n + 1)/2)*n/2.

%p a:= proc(n) option remember;

%p `if`(n<3, n, (n*(5-7*n)*a(n-1) +4*(n-2)*(7*n+16)*a(n-3)

%p +(24-12*n+172*n^2)*a(n-2))/ ((n+1)*(43*n-89)))

%p end:

%p seq(a(n), n=0..40); # _Alois P. Heinz_, Oct 20 2012

%t a[n_] := n/2*Binomial[n + Mod[n, 2], (n + Mod[n, 2])/2]; Table[a[n], {n, 0, 33}] (* _Jean-François Alcover_, Feb 22 2013, after _Joerg Arndt_ *)

%o (Maxima) a[0]:0$a[1]:1$a[2]:2$

%o a[n]:=(n*(5-7*n)*a[n-1] +4*(n-2)*(7*n+16)*a[n-3]+(24-12*n+172*n^2)*a[n-2])/ ((n+1)*(43*n-89))$

%o makelist(a[n] ,n,0,40); /* _Martin Ettl_, Oct 21 2012 */

%o (PARI) a(n) = n/2 * binomial(n+(n%2),(n+n%2)/2); /* _Joerg Arndt_, Oct 21 2012 */

%Y Cf. A005430 (bisection).

%K nonn,changed

%O 0,3

%A _Michel Marcus_, Oct 20 2012