login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A216350
Triangle T(n,k) in which n-th row lists in increasing order the values of the n-th derivative at x=1 of all functions that are representable as x^x^...^x with n x's and parentheses inserted in all possible ways; n>=1, 1<=k<=A000081(n).
8
1, 2, 9, 12, 56, 80, 100, 156, 480, 660, 890, 950, 1180, 1360, 1420, 1880, 3160, 5094, 6534, 8874, 10848, 10974, 13014, 13314, 14928, 14988, 15114, 20268, 21474, 22008, 24042, 29682, 31968, 34974, 35382, 50496, 87990, 65534, 78134, 102494, 131684, 141974
OFFSET
1,2
LINKS
EXAMPLE
For n=4 the A000081(4) = 4 functions and their 4th derivatives at x=1 are x^(x^3)->156, x^(x^x*x)->100, x^(x^(x^2))->80, x^(x^(x^x))->56 => 4th row = [56, 80, 100, 156].
Triangle T(n,k) begins:
: 1;
: 2;
: 9, 12;
: 56, 80, 100, 156;
: 480, 660, 890, 950, 1180, 1360, 1420, 1880, 3160;
: 5094, 6534, 8874, 10848, 10974, 13014, 13314, 14928, 14988, 15114, ...
MAPLE
with(combinat):
F:= proc(n) F(n):= `if`(n<2, [x$n], map(h->x^h, g(n-1, n-1))) end:
g:= proc(n, i) option remember; `if`(n=0 or i=1, [x^n],
`if`(i<1, [], [seq(seq(seq(mul(F(i)[w[t]-t+1], t=1..j)*v,
w=choose([$1..nops(F(i))+j-1], j)), v=g(n-i*j, i-1)), j=0..n/i)]))
end:
T:= n-> sort(map(f-> n!*coeff(series(subs(x=x+1, f)
, x, n+1), x, n), F(n)))[]:
seq(T(n), n=1..7);
CROSSREFS
First column gives: A033917.
Last elements of rows give: A216351.
A version with different ordering of row elements is: A216349.
Rows sums give: A216281.
Sequence in context: A076505 A218073 A129345 * A125019 A259984 A225548
KEYWORD
nonn,tabf
AUTHOR
Alois P. Heinz, Sep 04 2012
STATUS
approved