login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A216352
G.f.: A(x) = exp( Sum_{n>=1} A000172(n)^2*x^n/n ) where Franel number A000172(n) = Sum_{k=0..n} C(n,k)^3.
4
1, 4, 58, 1256, 35771, 1200188, 45016678, 1827941560, 78753548245, 3551810922324, 166120394053698, 8002733850225288, 395089619067741926, 19911864121386482264, 1021345223473335336668, 53190166903606336969840, 2807000233813092463820488, 149869216802426305919295328
OFFSET
0,2
EXAMPLE
G.f.: A(x) = 1 + 4*x + 58*x^2 + 1256*x^3 + 35771*x^4 + 1200188*x^5 +...
such that
log(A(x)) = 4*x + 100*x^2/2 + 3136*x^3/3 + 119716*x^4/4 + 5071504*x^5/5 +...+ A000172(n)^2*x^n/n +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^3)^2*x^m*1^m/m+x*O(x^n)))); polcoeff(A, n)}
for(n=0, 31, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Paul D. Hanna, Sep 04 2012
STATUS
approved