login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A375442
Expansion of g.f. A(x) satisfying 0 = Sum_{k=0..n} (-1)^k * binomial(4*n-3*k, k) * ([x^k] A(x)^n) for n >= 1.
1
1, 1, 4, 58, 2040, 141471, 17414299, 3548205700, 1133401180600, 542919997056985, 375875913182499803, 364645747772536556398, 482860134802496098766740, 853352199545631748454314991, 1973943714691108570803508891357, 5875562740836479708875221002947800, 22169669117423382437537944364347343144
OFFSET
0,3
COMMENTS
Note that 0 = Sum_{k=0..n} (-1)^k * binomial(n+k, 2*k) * ([x^k] C(x)^n) for n >= 1 is satisfied by the Catalan function C(x) = 1 + x*C(x)^2 (A000108), where coefficient [x^k] C(x)^n = binomial(n+2*k-1,k)*n/(n+k).
Note that 0 = Sum_{k=0..n} (-1)^k * binomial(n+2*k, 3*k) * ([x^k] D(x)^n) for n >= 1 is satisfied by the function D(x) = 1 + x*D(x)^3 (g.f. of A001764), where coefficient [x^k] D(x)^n = binomial(n+3*k-1, k)*n/(n+2*k).
LINKS
FORMULA
From Vaclav Kotesovec, Sep 12 2024: (Start)
a(n) ~ c * d^n * n!^4 * n^alpha, where d = 4/Pi^4, alpha = 3*(1 + Pi*tanh(Pi/2))/2 = 5.821978559932543777976797..., c = 0.0936210705524085151687305...
Equivalently, a(n) ~ c * 2^(2*n) * n^(4*n + (7 + 3*Pi*tanh(Pi/2))/2) / (exp(4*n) * Pi^(4*n)), where c = 3.69601171983499372807019... (End)
EXAMPLE
G.f.: A(x) = 1 + x + 4*x^2 + 58*x^3 + 2040*x^4 + 141471*x^5 + 17414299*x^6 + 3548205700*x^7 + 1133401180600*x^8 + ...
RELATED TABLES.
The table of coefficients of x^k in A(x)^n begins:
n=1: [1, 1, 4, 58, 2040, 141471, 17414299, ...];
n=2: [1, 2, 9, 124, 4212, 287486, 35131224, ...];
n=3: [1, 3, 15, 199, 6528, 438267, 53158351, ...];
n=4: [1, 4, 22, 284, 9001, 594052, 71503584, ...];
n=5: [1, 5, 30, 380, 11645, 755096, 90175175, ...];
n=6: [1, 6, 39, 488, 14475, 921672, 109181745, ...];
...
from which we may illustrate the defining property given by
0 = Sum_{k=0..n} (-1)^k * binomial(4*n-3*k, k) * ([x^k] A(x)^n).
Using the coefficients in the table above, we see that
n=1: 0 = 1*1 - 1*1;
n=2: 0 = 1*1 - 5*2 + 1*9;
n=3: 0 = 1*1 - 9*3 + 15*15 - 1*199;
n=4: 0 = 1*1 - 13*4 + 45*22 - 35*284 + 1*9001;
n=5: 0 = 1*1 - 17*5 + 91*30 - 165*380 + 70*11645 - 1*755096;
n=6: 0 = 1*1 - 21*6 + 153*39 - 455*488 + 495*14475 - 126*921672 + 1*109181745;
...
The triangle T(n,k) = binomial(4*m-3*k, k) begins:
n=0: 1;
n=1: 1, 1;
n=2: 1, 5, 1;
n=3: 1, 9, 15, 1;
n=4: 1, 13, 45, 35, 1;
n=5: 1, 17, 91, 165, 70, 1;
n=6: 1, 21, 153, 455, 495, 126, 1;
...
PROG
(PARI) {a(n) = my(A=[1], m); for(i=1, n, A=concat(A, 0); m=#A-1;
A[#A] = sum(k=0, m, (-1)^(m-k+1) * binomial(4*m-3*k, k) * polcoef(Ser(A)^m, k) )/m ); A[n+1]}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 12 2024
STATUS
approved