login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A375444
Expansion of g.f. A(x) satisfying A(x)^2 = A( x^2/(1-2*x)^4 )/(1-2*x).
3
1, 1, 2, 7, 30, 130, 561, 2460, 11115, 51948, 250551, 1240828, 6274580, 32231322, 167460901, 876998437, 4617448333, 24395086617, 129162020323, 684753458054, 3633159683023, 19287528099428, 102441443882448, 544372928359375, 2894576197980724, 15402989792369740, 82040643327234351
OFFSET
0,3
COMMENTS
Compare to M(x)^2 = M( x^2/(1-2*x) )/(1-2*x), where M(x) = 1 + x*M(x) + x^2*M(x)^2 is the g.f. of the Motzkin numbers (A001006).
Compare to C(x)^2 = C( x^2/(1-2*x)^2 )/(1-2*x), where C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers (A000108).
LINKS
FORMULA
G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) A(x)^2 = A( x^2/(1-2*x)^4 )/(1-2*x).
(2) A(x)^4 = A( x^4*y^4 )*y where y = (1-2*x)^2/((1-2*x)^4 - 2*x^2).
(3) A(x^2 + 4*x^3 + 4*x^4) = A( x/(1+2*x) )^2 / (1+2*x).
The radius of convergence r satisfies r = (1 - 2*r)^4, where A(r) = 1/(1-2*r) and r = 0.17610056436947880725475085178711534652...
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 30*x^4 + 130*x^5 + 561*x^6 + 2460*x^7 + 11115*x^8 + 51948*x^9 + 250551*x^10 + ...
where A(x)^2 = A( x^2/(1-2*x)^4 )/(1-2*x).
RELATED SERIES.
A(x)^2 = 1 + 2*x + 5*x^2 + 18*x^3 + 78*x^4 + 348*x^5 + 1551*x^6 + 6982*x^7 + 32114*x^8 + 151620*x^9 + 734458*x^10 + ...
A(x)^4 = 1 + 4*x + 14*x^2 + 56*x^3 + 253*x^4 + 1188*x^5 + 5598*x^6 + 26456*x^7 + 126278*x^8 + ... + A375454(n+1)*x^n + ...
SPECIFIC VALUES.
Given the radius of convergence r = 0.17610056436947880725475...,
A(r) = 1.5436890126920763615708559718017479865252032976509...
where r = (1-2*r)^4 and A(r) = 1/(1-2*r).
A(1/6) = 1.35888986768048814311476385141914227984504826245...
where A(1/6)^2 = (3/2)*A(9/64).
A(1/7) = 1.23858760007712401376241920277473621006326963714...
where A(1/7)^2 = (7/5)*A(49/625).
A(1/8) = 1.18621527667665867031082807873688257681814274612...
where A(1/8)^2 = (4/3)*A(4/81).
A(1/9) = 1.15430486498931766438966249826580193821574473318...
where A(1/9)^2 = (9/7)*A(81/2401).
A(1/10) = 1.1323205915354275720071052412999606676975412945...
where A(1/10)^2 = (5/4)*A(25/1024).
PROG
(PARI) {a(n) = my(A=[1], Ax=x); for(i=1, n, A = concat(A, 0); Ax=Ser(A);
A[#A] = (1/2)*polcoeff( subst(Ax, x, x^2/(1-2*x)^4 )/(1-2*x) - Ax^2, #A-1) ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 19 2024
STATUS
approved