login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of g.f. A(x) satisfying A(x)^2 = A( x^2/(1-2*x)^4 )/(1-2*x).
3

%I #9 Aug 19 2024 15:31:24

%S 1,1,2,7,30,130,561,2460,11115,51948,250551,1240828,6274580,32231322,

%T 167460901,876998437,4617448333,24395086617,129162020323,684753458054,

%U 3633159683023,19287528099428,102441443882448,544372928359375,2894576197980724,15402989792369740,82040643327234351

%N Expansion of g.f. A(x) satisfying A(x)^2 = A( x^2/(1-2*x)^4 )/(1-2*x).

%C Compare to M(x)^2 = M( x^2/(1-2*x) )/(1-2*x), where M(x) = 1 + x*M(x) + x^2*M(x)^2 is the g.f. of the Motzkin numbers (A001006).

%C Compare to C(x)^2 = C( x^2/(1-2*x)^2 )/(1-2*x), where C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers (A000108).

%H Paul D. Hanna, <a href="/A375444/b375444.txt">Table of n, a(n) for n = 0..400</a>

%F G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.

%F (1) A(x)^2 = A( x^2/(1-2*x)^4 )/(1-2*x).

%F (2) A(x)^4 = A( x^4*y^4 )*y where y = (1-2*x)^2/((1-2*x)^4 - 2*x^2).

%F (3) A(x^2 + 4*x^3 + 4*x^4) = A( x/(1+2*x) )^2 / (1+2*x).

%F The radius of convergence r satisfies r = (1 - 2*r)^4, where A(r) = 1/(1-2*r) and r = 0.17610056436947880725475085178711534652...

%e G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 30*x^4 + 130*x^5 + 561*x^6 + 2460*x^7 + 11115*x^8 + 51948*x^9 + 250551*x^10 + ...

%e where A(x)^2 = A( x^2/(1-2*x)^4 )/(1-2*x).

%e RELATED SERIES.

%e A(x)^2 = 1 + 2*x + 5*x^2 + 18*x^3 + 78*x^4 + 348*x^5 + 1551*x^6 + 6982*x^7 + 32114*x^8 + 151620*x^9 + 734458*x^10 + ...

%e A(x)^4 = 1 + 4*x + 14*x^2 + 56*x^3 + 253*x^4 + 1188*x^5 + 5598*x^6 + 26456*x^7 + 126278*x^8 + ... + A375454(n+1)*x^n + ...

%e SPECIFIC VALUES.

%e Given the radius of convergence r = 0.17610056436947880725475...,

%e A(r) = 1.5436890126920763615708559718017479865252032976509...

%e where r = (1-2*r)^4 and A(r) = 1/(1-2*r).

%e A(1/6) = 1.35888986768048814311476385141914227984504826245...

%e where A(1/6)^2 = (3/2)*A(9/64).

%e A(1/7) = 1.23858760007712401376241920277473621006326963714...

%e where A(1/7)^2 = (7/5)*A(49/625).

%e A(1/8) = 1.18621527667665867031082807873688257681814274612...

%e where A(1/8)^2 = (4/3)*A(4/81).

%e A(1/9) = 1.15430486498931766438966249826580193821574473318...

%e where A(1/9)^2 = (9/7)*A(81/2401).

%e A(1/10) = 1.1323205915354275720071052412999606676975412945...

%e where A(1/10)^2 = (5/4)*A(25/1024).

%o (PARI) {a(n) = my(A=[1], Ax=x); for(i=1, n, A = concat(A, 0); Ax=Ser(A);

%o A[#A] = (1/2)*polcoeff( subst(Ax, x, x^2/(1-2*x)^4 )/(1-2*x) - Ax^2, #A-1) ); A[n+1]}

%o for(n=0, 30, print1(a(n), ", "))

%Y Cf. A001006, A000108, A375454, A375443, A375445.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Aug 19 2024