login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A299296
G.f. 1/(1-z*R(z*m(z))) where R(z) = (1-z-(z+1)*sqrt(1-4*z))/(2*z^2), m(z) = (3-z-sqrt(1-6*z+z^2))/2.
0
1, 2, 7, 30, 140, 684, 3440, 17652, 91936, 484356, 2575280, 13795668, 74367408, 403026372, 2194186272, 11993494356, 65787201984, 361983246084, 1997299980368, 11048026950228, 61250480822416, 340274092662084, 1893939042807872, 10559753415822420, 58970301517748000
OFFSET
0,2
MAPLE
R:=z->(1-z-(z+1)*sqrt(1-4*z))/(2*z^2);
m:=z->(3-z-sqrt(1-6*z+z^2))/2;
M:=z->1/(1-z*R(z*m(z)));
series(M(z), z, 40);
seriestolist(%);
MATHEMATICA
R[z_] := (1 - z - (z + 1) Sqrt[1 - 4 z])/(2 z^2); m[z_] := (3 - z - Sqrt[1 - 6 z + z^2])/2; CoefficientList[Series[1/(1 - z R[z m[z]]), {z, 0, 24}], z] (* Michael De Vlieger, Feb 17 2018 *)
CROSSREFS
Sequence in context: A375444 A027136 A353288 * A116363 A186858 A360102
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 17 2018
STATUS
approved