login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360102
a(n) = Sum_{k=0..n} binomial(n+2*k,n-k) * Catalan(k).
4
1, 2, 7, 30, 141, 703, 3655, 19603, 107679, 602756, 3426049, 19721069, 114728723, 673494466, 3984493735, 23732956453, 142204128507, 856560123504, 5183708936061, 31502904805922, 192180259402691, 1176416604202925, 7223943302003917, 44486888142708088
OFFSET
0,2
FORMULA
G.f. A(x) satisfies A(x) = 1/(1-x) + x * A(x)^2 / (1-x)^2.
G.f.: (1/(1-x)) * c(x/(1-x)^3), where c(x) is the g.f. of A000108.
D-finite with recurrence (n+1)*a(n) +4*(-2*n+1)*a(n-1) +10*(n-2)*a(n-2) +2*(-2*n+7)*a(n-3) +(n-5)*a(n-4)=0. - R. J. Mathar, Mar 12 2023
MAPLE
A360102 := proc(n)
add(binomial(n+2*k, n-k)*A000108(k), k=0..n) ;
end proc:
seq(A360102(n), n=0..70) ; # R. J. Mathar, Mar 12 2023
PROG
(PARI) a(n) = sum(k=0, n, binomial(n+2*k, n-k)*binomial(2*k, k)/(k+1));
(PARI) my(N=30, x='x+O('x^N)); Vec(2/((1-x)*(1+sqrt(1-4*x/(1-x)^3))))
CROSSREFS
Partial sums of A360100.
Partial sums are A258973.
Sequence in context: A299296 A116363 A186858 * A369441 A371432 A366089
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 25 2023
STATUS
approved