login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360100
a(n) = Sum_{k=0..n} binomial(n+2*k-1,n-k) * Catalan(k).
6
1, 1, 5, 23, 111, 562, 2952, 15948, 88076, 495077, 2823293, 16295020, 95007654, 558765743, 3310999269, 19748462718, 118471172054, 714355994997, 4327148812557, 26319195869861, 160677354596769, 984236344800234, 6047526697800992, 37262944840704171
OFFSET
0,3
FORMULA
G.f. A(x) satisfies A(x) = 1 + x * A(x)^2 / (1-x)^3.
G.f.: c(x/(1-x)^3), where c(x) is the g.f. of A000108.
a(n) ~ sqrt(-2 + (35 - 3*sqrt(129))^(1/3) + (35 + 3*sqrt(129))^(1/3)) * (((7 + (262 - 6*sqrt(129))^(1/3) + (2*(131 + 3*sqrt(129)))^(1/3))/3)^n / (sqrt(2*Pi) * n^(3/2))). - Vaclav Kotesovec, Feb 18 2023
D-finite with recurrence (n+1)*a(n) +(-8*n+5)*a(n-1) +(10*n-27)*a(n-2) +(-4*n+17)*a(n-3) +(n-6)*a(n-4)=0. - R. J. Mathar, Mar 12 2023
MAPLE
A360100 := proc(n)
add(binomial(n+2*k-1, n-k)*A000108(k), k=0..n) ;
end proc:
seq(A360100(n), n=0..70) ; # R. J. Mathar, Mar 12 2023
MATHEMATICA
m = 24;
A[_] = 0;
Do[A[x_] = 1 + x A[x]^2/(1 - x)^3 + O[x]^m // Normal, {m}];
CoefficientList[A[x], x] (* Jean-François Alcover, Aug 16 2023 *)
PROG
(PARI) a(n) = sum(k=0, n, binomial(n+2*k-1, n-k)*binomial(2*k, k)/(k+1));
(PARI) my(N=30, x='x+O('x^N)); Vec(2/(1+sqrt(1-4*x/(1-x)^3)))
CROSSREFS
Partial sums are A360102.
Cf. A000108.
Sequence in context: A017974 A244936 A017975 * A178873 A186652 A199312
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 25 2023
STATUS
approved